BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

)	
)	
)	
)	
)	PCB NO.: 2020-047
)	
)	
)	
)	
)	
))))))))

NOTICE OF FILING

To: David L. Rieser Don Brown

K&L Gates LLC Clerk of the Illinois Pollution Control Board

70 W. Madison Street, Suite 3100 100 W. Randolph Street, Suite 11-500

Chicago, IL 60602 Chicago, IL 60602 David.Rieser@klgates.com don.brown@illinois.gov

PLEASE TAKE NOTICE THAT on Wednesday, May 20, 2020, I caused to be filed with the Clerk of the Illinois Pollution Control Board, the Record on Appeal (R1-265), the Index of the Record on Appeal, and the Certificate of Record on Appeal Pursuant to 35 Ill. Adm. Code 105.116 and 105.212, on behalf of the Illinois Environmental Protection Agency, Respondent, via the "COOL" System, true and correct copies are attached and hereby served upon you.

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY,

By:/s/ Ellen F.,O'Laughlin
Ellen F. O'Laughlin
Office of the Illinois Attorney General
69 W. Washington Street, 18th Floor
Chicago, IL 60602
(312) 814-3094
eolaughlin@atg.state.il.us
MCacaccio@atg.state.il.us

CERTIFCATE OF SERVICE

I, Ellen F. O'Laughlin, an Assistant Attorney General, hereby certify that on this 20th day of May, 2020, I served the foregoing Notice of Filing, Record on Appeal, Index of Record on Appeal and Certificate of Record on Appeal to persons listed on the Notice of Filing via email.

/s/ Ellen O'Laughlin Ellen O'Laughlin Office of the Illinois Attorney General 69 W. Washington Street, 18th Floor Chicago, IL 60602 (312) 814-3094 eolaughlin@atg.state.il.us

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

IMTT ILLINOIS, LLC)	
Petitioner,)	PCB 20-47
)	(Permit Appeal)
v.)	
)	
ILLINOIS ENVIRONMENTAL)	
PROTECTION AGENCY,)	
Respondent.)	

CERTIFICATE OF RECORD ON APPEAL

I, Shu-Mei Tsai, of the Illinois Environmental Protection Agency hereby certify that the Record on Appeal filed in the above-referenced matter and summarized in the attached Index of the Record on Appeal Pursuant to 35 Ill. Adm. Code 105.116 and 105.212 (the "Index"), is true and complete to the best of my knowledge, information and belief.

Shu-Mei Tsai

Environmental Engineer III

Illinois Environmental Protection Agency

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

IMTT ILLINOIS, LLC)	
Petitioner,)	PCB 20-47
)	(Permit Appeal)
v.)	
)	
ILLINOIS ENVIRONMENTAL)	
PROTECTION AGENCY,)	
Respondent.)	

RECORD ON APPEAL

Respondent, ILLINOIS ENVIRONMENTAL PROTECTION AGENCY ("Illinois EPA"), in accordance with the procedural rules of the Illinois Pollution Control Board as set forth in 35 Ill. Adm. Code 105.212 and 105.116, files as its Record in this cause the Illinois EPA's record of National Pollutant Discharge System ("NPDES") Permit number IL0005126, issued to IMTT Illinois LLC ("IMTT") on December 13, 2019, which is attached and consists of the following documents:

- 1. Application for Industrial Wastewater NPDES Permit dated October 2, 2018, submitted by Larry Newton, Environmental Manager, IMTT (pp. R1 R51).
- 2. Illinois EPA memorandum dated October 10, 2018, from Shu-Mei Tsai, Division of Water Pollution Control ("DWPC"), Permit Section, to Scott Twait, DWPC Standards Unit (p. R52).
- 3. Effluent concentration data (pp. R53 R116).
- 4. Ammonia worksheet, April 3, 2019 (p. R117).
- 5. Emails on May 30 and 31, 2019, between Shu-Mei Tsai and Abby Brokaw, DWPC Standards Unit (pp. R118 R120).
- 6. Vinyl chloride toxicity criteria (pp. R121 R123).
- 7. Illinois EPA memorandum dated July 11, 2019, from Scott Twait to Shu-Mei Tsai (pp. R124 127).

- 8. Email on July 15, 2019, from Scott Twait to Shu-Mei Tsai (p. R128).
- 9. Emails on July 23, 2019, between Michelle Rousey, Quality Assurance Officer, Bureau of Water, and Shu-Mei Tsai (pp. R129 R130).
- 10. Industrial NPDES Permit review notes, prepared by Shu-Mei Tsai. (pp. R131 R140).
- 11. Illinois EPA memorandum and letters dated July 25, 2019, from Darin LeCrone, DWPC, Manager, Industrial Unit, to Manager, DWPC/Field Operations Section ("FOS"), Department of the Army Corps of Engineers, Chicago District; and IMTT, with attached draft permit and 15-day public notice/fact sheet (pp. R141 R167).
- 12. Letter dated July 31, 2019, from Larry Newton to Illinois Public Notice Clerk, objecting to terms of draft permit (p. R168).
- 13. 15-day notice review notes dated August 16, 2019, prepared by Shu-Mei Tsai (p. R169).
- 14. Letters dated August 20, 2019, from Darin LeCrone to Municipal Clerk, Lemont, Illinois; Edward Karecki, U.S. Fish and Wildlife Service, Chicago Field Office; and IMTT, with attached draft permit and 30-day public notice/fact sheet (pp. R170 R191).
- 15. Public Notice acknowledgment post card, signed August 26, 2019 (p. R192).
- 16. 30-day notice review notes dated September 24, 2019, prepared by Shu-Mei Tsai (p. R193).
- 17. 30-day notice review notes dated September 24, 2019, prepared by Shu-Mei Tsai (pp. R194 195).
- 18. Letter dated October 3, 2019, from Larry Newton to Darin LeCrone, objecting to terms of the draft permit (pp. R196 R198).
- 19. Emails on September 24, 25 and 26, and October 3, 2019, between Larry Newton and Shu-Mei-Tsai, with attached October 3, 2019 letter from Larry Newton to Darin LeCrone (pp. R199 R204).
- 20. Emails on October 11, 2019, between Scott Twait and Shu-Mei Tsai, who forwarded the attached September 24, 25 and 26, and October 3, 2019 email chain (pp. R205 R208).
- 21. Letters dated October 25, 2019, from Darin LeCrone to Municipal Clerk, Lemont, Illinois; Edward Karecki, U.S. Fish and Wildlife Service, Chicago Field Office; and IMTT, with attached draft permit and (re-issued) 30-day public notice/fact sheet (pp. R209 R235).
- 22. Public Notice acknowledgment post card, signed November 5, 2019 (p. R236).

- 23. Emails on October 29, 2019, between Larry Newton and Shu-Mei Tsai (pp. R237 R240).
- 24. Letter dated November 6, 2019, from Larry Newton to Darin LeCrone (pp. R241 R243).
- 25. Emails on November 18 and 22 and December 12, 2019, from Ellen Paller, IMTT, to Shu-Mei Tsai (pp. R244 245).
- 26. 30-day notice review notes dated December 2, 2019, prepared by Shu-Mei Tsai (p. R246).
- 27. Letter dated December 13, 2019, from Darin LeCrone to IMTT, with attached NPDES Permit No. IL0005126, effective January 1, 2020. (pp. R247 R265).

Respectfully submitted,

KWAME RAOUL, Attorney General of the State of Illinois,

MATTHEW J. DUNN, Chief Environmental Enforcement/Asbestos Litigation Division

By: /s/Ellen F. O'Laughlin Ellen F. O'Laughlin Assistant Attorney General Environmental Bureau 69 W. Washington St., 18th Floor Chicago, IL 60602 (312) 814-3094 eolaughlin@atg.state.il.us

Dated: May 20, 2020

THIS FILING PRINTED ON RECYCLED PAPER

IMTT-Illinois

A PARTNERSHIP

Lemont Facility 13589 Main Street Lemont, IL 60439 Phone (630) 257-6222 Fax (630) 257-7135

Joliet Facility 24420 W. Durkee Road Channahon, IL 60410 Phone (815) 423-2500 Fax (815) 423-2525

October 2, 2018

Mr. Alan Keller, P.E.
Manager, Permit Section
Division of Water Pollution Control
Illinois Environmental Protection Agency
1021 North Grand Avenue East
Springfield, IL 62702

NPDES Permit No. IL0005126

IMTT Illinois – Lemont Terminal

Permit Renewal

Dear Mr. Keller:

Re:

Enclosed please find the renewal application for the above referenced NPDES permit for IMTT Illinois Lemont Terminal.

Should you have any questions or require any additional information, please feel free to contact me by phone at 630-257-3960 or via email at larrynewton@imtt.com.

Sincerely

Larry Newton

Environmental Manager

Enclosures

Form 1, General Information

Form 2c, Application for Permit to Discharge

Form 2e, Facilities that do not Discharge Process Water

Form 2f, Application for Permit to Discharge – Industrial Activities

Exhibit 1 - Drainage Map

Exhibit 2 – Flow Map, Outfall -001

Exhibit 3 — Proximity Map

Appendices A-E, stormwater sampling results

Please print or	type in the unshaded	d areas only.					Form Approved, OMB No. 2040-0	086.				
FORM	0.774				PROTECTI FORMA	ON AGENCY	I. EPA I.D. NUMBER					
1	\$EPA	Co	ermits Prog	F IL0005126			T/A C					
GENERAL	L	(Read the	'Gener	al Instr	uctions" bef	1 2	Va	13	14 15			
LABE	LITEMS						If a preprinted label range					
. EPA I.D.	NUMBER						designated space. Reviewing information is incorrect, cross throught and en appropriate fill-in area to the left of information that should enced along the state of the left	nation ter the	correct	r; if any of a data in the		
II. FACILIT	YNAME	PLEASE	E PLA	CE LAI	BEL IN THI	S SPACE	miloringuoti that arround appears, place	age hir	MOG If I	I die biobe		
V. FACILIT	Y MAILING						fill-in area(s) below. If the label is of need not complete Items I, III, V, a must be completed regardless). Cornas been provided. Reference.	nd 1/1	/avaant	VII D which		
VI. FACILIT	Y LOCATION						descriptions and for the legal autho data is collected.	rization	s unde	r which this		
I. POLLUTAN	T CHARACTERISTI	cs	No.	1 81								
submit this for you answer *n	rm and the supplement of to each question,	ental form listed in the pare	nthesi	is follow e forms	wing the quality of the second	estion. Mark "X" in the box in answer "no" if your activity is	the EPA. If you answer "yes" to ar the third column if the supplemer excluded from permit requirements	ntal fo	rm is a Section	ittached. I		
	SPECIFIC QUE	STIONS	YES	_	FORM ATTACHED	SPECIFIC	C QUESTIONS	YES	NO	FORM		
		d treatment works which s of the U.S.? (FORM 2A)		X		include a concentrated aquatic animal produc	y (either existing or proposed) I animal feeding operation or tion facility which results in a		X			
C. Is this a fac	cility which currently	results in discharges to	16	17	18	discharge to waters of t D. Is this a proposed facility	ne U.S.? (FORM 2B) (other than those described in A	19	20	21		
	the U.S. other than	those described in A or B	X		X		sult in a discharge to waters of		X			
		at store or dispose of	22	23	24		ect at this facility industrial or	25	26	27		
	E. Does or will this facility treat, store, or dispose of hazardous wastes? (FORM 3)				30	municipal effluent be containing, within one	municipal effluent below the lowermost stratum containing, within one quarter mile of the well bore, underground sources of drinking water? (FORM 4)					
3. Do you or will you inject at this facility any produced water or other fluids which are brought to the surface in connection with conventional oil or natural gas production, inject fluids used for enhanced recovery of oil or natural gas, or inject fluids for storage of liquid hydrocarbons? (FORM 4)				X		processes such as mining solution mining of miner	t at this facility fluids for special g of sulfur by the Frasch process, rals, in situ combustion of fossil ermal energy? (FORM 4)	31	X	33		
	tv a proposed statio	onary source which is one	34	35	36	I Is this facility a propos	ed stationary source which is	37	38	30		
of the 28 in which will p	dustrial categories lis potentially emit 100	sted in the instructions and tons per year of any air lean Air Act and may affect		×	-	NOT one of the 28 in instructions and which w	dustrial categories listed in the will potentially emit 250 tons per regulated under the Clean Air Act		X			
	ed in an attainment a		40	41	42		ocated in an attainment area?	43	4	45		
III. NAME OF	FACILITY											
SKIP I	MTT ILLINO	IS LLC - Lemont	Fa	cil	ity			1	1			
5 16 - 29 30								69				
V. FACILITY	CONTACT	A NAME OF THE CO.		0			D DUONE (Section 1			
c]]]		A. NAME & TITLE (lass	İΤ	TI	111		B. PHONE (area code & no.)	-				
	Newton, En	vironmental Ma	nag	er			(630) 257-3960					
V.FACILTY M	AILING ADDRESS	7-7-		-	-	45	48 48 49 51 52- 5	8				
		A. STREET OR P	.O. BC	X					146			
c 3 13589	Main Stree		11	11	111							
15 16						45						
		B. CITY OR TOWN				C. STATE	D. ZIP CODE					
Lemont		111111	1	i i	1 1 1	' ' IL 6	50439					
5 18						40 41 42 47	51					
VI. FACILITY	-	ET POUTE NO OR OTHE	D CD	COLETO	IDENTIFIE			SEE OF	No.			
,	Main Stree	ET, ROUTE NO. OR OTHE T T T T T T T Et	T	TT	TTT							
15 18		B. COUNTY	/ NAM	E		45		VEALER MALE				
Cook and	d DuPage	11111	1 1	-	TT		70					
• T T T		C. CITY OR TOWN	7		117	D. STATE	E. ZIP CODE F. COUNTY CO	ODE (if know	n)		
6 LEMONT			-	-		1 IL 6	50439		_	5000		

VII. SIC CODES (4-digit, in order of priority)	
A. FIRST	B. SECOND
7 4226 Special Warehousing and Storage	(specify)
C. THIRD	15 18 - 19 D. FOURTH
c (specify)	c (specify)
15 18 - 19	15 16 - 19
VIII. OPERATOR INFORMATION A. NAME	B. Is the name listed in Item
8 IMTT Illinois LLC	VIII-A also the owner? ☑ YES □ NO
C. STATUS OF OPERATOR (Enter the appropriate letter into the	
F = FEDERAL (9	pecify)
S = STATE P = PRIVATE M = PUBLIC (other than federal or state) O = OTHER (specify) D	A (630) 257-3960
E. STREET OR P.O. BOX	
13589 Main Street	
28 CITY OR TOWN	SS LC CTATE L TID CODE IN INDIANA AND
F. CITY OR TOWN	G. STATE H. ZIP CODE IX. INDIAN LAND Is the facility located on Indian lands?
B Lemont	IL 60439
X. EXISTING ENVIRONMENTAL PERMITS	
	nissions from Proposed Sources)
	031806AAG
15 16 17 18 30 15 16 17 18	30
B. UIC (Underground Injection of Fluids)	E. OTHER (specify)
9 U	
15 16 17 16 20 15 16 17 18 C. RCRA (Hazardous Wastes)	so] E. OTHER (specify)
CTI	(specify)
9 R ILD980823835 9	
15 16 17 18 30 15 16 17 18	
	30
XI. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it
XI. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it
XI. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The
XI. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description)	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube
XI. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube
XI. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube
XI. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube
XI. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube
XI. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube
XI. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility through its barge, rail, and truck stations.	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube
XI. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube
XI. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility through its barge, rail, and truck stations.	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube
XI. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility through its barge, rail, and truck stations.	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube
XI. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility through its barge, rail, and truck stations.	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube
XII. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility through its barge, rail, and truck stations. XIII. CERTIFICATION (see instructions) I certify under penalty of law that I have personally examined and am familiar with inquiry of those persons immediately responsible for obtaining the information continuation continuation.	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube has the capability of loading and unloading materials the information submitted in this application and all attachments and that, based on my ained in the application, I believe that the information is true, accurate, and complete. I
XII. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility through its barge, rail, and truck stations. XIII. CERTIFICATION (see instructions) I certify under penalty of law that I have personally examined and am familiar with inquiry of those persons immediately responsible for obtaining the information contam aware that there are significant penalties for submitting false information, including	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube has the capability of loading and unloading materials the information submitted in this application and all attachments and that, based on my ained in the application, I believe that the information is true, accurate, and complete. I are the possibility of fine and imprisonment.
Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies. XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility through its barge, rail, and truck stations. XIII. CERTIFICATION (see instructions) I certify under penalty of law that I have personally examined and am familiar with inquiry of those persons immediately responsible for obtaining the information contam aware that there are significant penalties for submitting false information, including A. NAME & OFFICIAL TITLE (type or print) B. SIGNATUR	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube has the capability of loading and unloading materials the information submitted in this application and all attachments and that, based on my ained in the application, I believe that the information is true, accurate, and complete. I are the possibility of fine and imprisonment.
XII. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility through its barge, rail, and truck stations. XIII. CERTIFICATION (see instructions) I certify under penalty of law that I have personally examined and am familiar with inquiry of those persons immediately responsible for obtaining the information contam aware that there are significant penalties for submitting false information, including the information that it is a special type of the information that it is a special type of the information that it is a special type of the information that it is a special type of the information that it is a special type of the information that it is a special type of the information that it is a special type of the information that it is a special	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube has the capability of loading and unloading materials the information submitted in this application and all attachments and that, based on my ained in the application, I believe that the information is true, accurate, and complete. I are the possibility of fine and imprisonment.
Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies. XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility through its barge, rail, and truck stations. XIII. CERTIFICATION (see instructions) I certify under penalty of law that I have personally examined and am familiar with inquiry of those persons immediately responsible for obtaining the information contam aware that there are significant penalties for submitting false information, including A. NAME & OFFICIAL TITLE (type or print) B. SIGNATUR	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube has the capability of loading and unloading materials the information submitted in this application and all attachments and that, based on my ained in the application, I believe that the information is true, accurate, and complete. I are the possibility of fine and imprisonment.
XII. MAP Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies XII. NATURE OF BUSINESS (provide a brief description) IMTT Illinois - Lemont terminal is a specialty chemical terminal provides for the storage of various finished of stocks to quality solvents and chemicals. The facility through its barge, rail, and truck stations. XIII. CERTIFICATION (see instructions) I certify under penalty of law that I have personally examined and am familiar with inquiry of those persons immediately responsible for obtaining the information contam aware that there are significant penalties for submitting false information, including A. NAME & OFFICIAL TITLE (type or print) Michael J. Martino, Facility Manger COMMENTS FOR OFFICIAL USE ONLY	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements. bulk for-hire storage and distribution facility. The raw products for sale to industry ranging from lube has the capability of loading and unloading materials the information submitted in this application and all attachments and that, based on my ained in the application, I believe that the information is true, accurate, and complete. I are the possibility of fine and imprisonment.

EPA I.D. NUMBER (copy from Item 1 of Form 1)

OCT 03 2018 Form Approved. OMB No. 2040-0086.

Please print or type in the unshaded areas only

IL0005126

Approval expires 3-31-98.

U.S. ENVIRONMENTAL PROTECTION AGENCY

BOW/WPC/PERMIT SECTION

APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURE OPERATIONS Consolidated Permits Program

I. OUTFALL LOCATION

FORM

NPDES

For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water. A OUTFALL NUMBER R LATITUDE C LONGITUDE

A. OUTFALL NOWIDER		B. ERTITODE			. LUNGITUDI	_		
(list)	1. DEG	2. MIN.	3. SEC.	1. DEG.	2. MIN.	3. SEC.	D. RECEIVING WATER (name)	
001	41.00	41.00	36.59	87.00	57.00	10.87	Illinois and Michigan Canal	
002	41.00	41,00	33.53	87.00	57.00	19.62	Illinois and Michigan Canal	
003	41.00	41.00	36.24	87.00	56.00	37.66	Calumet Sag Channel	
A01	41.00	41.00	39.59	87.00	57.00	7.93	Internal Outfall drains to 001	
B01 and C01	41.00	41.00	27.87	87.00	57.00	8.06	Internal Outfalls drains to 001	

II. FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES

- Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.
- B. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary

1. OUT-	2. OPERATION(S) CON	TRIBUTING FLOW	3. TREATMENT						
FALL NO. (list)	ALL D. (list) a. OPERATION (list) b. AVERAGE FLOW (include units)		a. DESCRIPTION	b. LIST CO					
001	Boiler Condensate	(include units) a. DESCRIPTION pH adjusted with acid, 100 gpd Hard water ion exchange 1,000 gpd Reverse Osmosis (Hyperfiltration) 140 gpd Discharge to surface water (retention pond) 260 MM gal/year Aerated, Settling Pond Maximum 1 MM gal/hydro Discharge to surface water (retention pond) 30 gpd Discharge to surface water (retention pond) 10 gpd Discharge to surface water (retention pond) Discharge to surface water (retention pond) Discharge to surface water (retention pond) not measured Discharge to surface water (drainage ditch) al)	2-K						
	Water Softener	100 gpd	Hard water ion exchange	2-J					
	Backflush (brine water)	1,000 gpd	Reverse Osmosis (Hyperfiltration)	1-8					
	Fire Hose Hydro Test Water	140 gpđ	Discharge to surface water (retention pond)	4 - A					
001	Stormwater Runoff	260 MM gal/year	Aerated, Settling Pond	3-B					
	Tank Hydrostatic Test Water	Maximum 1 MM gal/hydro	Discharge to surface water (retention pond)	4-A					
	Tank Steam Condensate	30 gpd	Discharge to surface water (retention pond)	4-A					
	Safety Shower Test Water	10 gpd	Discharge to surface water (retention pond)	4-A					
000	Storm Water Runoff	not measured	Discharge to surface water (drainage ditch)	4-A					
002	(Receiving water I & M Canal)								
003	Storm Water Runoff	not measured	Discharge to surface water (drainaage ditch)	4-A					
	(Receiving water Cal-Sag Channel)								
	Scale House Area Septic Tank System		Aerated, Chlorinated, settling Tank						
A01 and		1100 gpd	Discharge to surface water (retention pond)	2-F	1-0				
BO1	Packaging Area Septic Tank System		Aerated, Chlorinated, Settling Tank	4-A	3-B				
3	rackaging Azea Septite Taile System	650 gpd	Discharge to surface water (retention pond)	2-F	1-0				
				4-A	3-8				
CO1	Groundwater-Perc/DNAPL Remediation	3 gpd	Air Stipper	1-F					
K .		1121	Filtering Unit	3-H					
ji j			Carbon Absorption	2-A					
			Discharge to surface water (retention pond)	4-A					

OFFICIAL USE ONLY (effluent guidelines sub-categories)

	noff, leaks, or sp complete the follo		the discharge		tems II-A or B int NO (go to Sec		sonal?			
				3. FRI	EQUENCY			4. FLOW		
				a. DAYS PER	1			B. TOTAL		
1. OUTFALL		PERATION(s) RIBUTING FLOV	. 00	WEEK (specify	b. MONTHS PER YEAR	a. FLOW RA			ith tenits)	C. DURATIO
NUMBER (list)	CONTR	(list)	'	average)	(specify average)	1. LONG TERM AVERAGE	2. MAXIMUM DAILY	1. LONG TERM AVERAGE	2. MAXIMUM DAILY	(in days)
					0					
- 1										1
-								İ		
				l.		4	1	1		1
						i i			1	
						ľ				
									1	
. 1				-	1					1
I. PRODUCTION	1									
A. Does an effluent gu	ideline limitation	nomulaated	by EPA under	Section 304 of	the Clean Water	Act apply to you	ır facility?			
	complete Item III-		by EPA under		NO (go to Sec		II Tacinty?			
3. Are the limitations in			line evoressed				retion)?			
	complete Item III-		ille expresseu		NO (go to Sec		rauony			
. If you answered "y			ity which repre				production, ex	pressed in the	terms and uni	ts used in th
applicable effluent	guideline, and in									
		1. AV	ERAGE DAILY	PRODUCTION				2. AF	ECTED OUT	FALLS
a. QUANTITY PER D	AY b. UNITS	S OF MEASU	RE	c. OPERATI	ION, PRODUCT, (specify)	MATERIAL, ET	C.	(//	st outfall numb	ers)
					(-73))					
8.66										
			ĺ					ľ		
	- 1		-							
	1									
/. IMPROVEMENTS			(·
A. Are you now requ	ired by any Fe	deral, State of	r local authori	ty to meet any	implementation	schedule for t	he constructio	n, upgrading o	r operations of	of wastewate
treatment equipme permit conditions, a										not limited to
	complete the follo		orders, emore	aneni compilari	NO (go to Iter		Court orders, a	and graint or loa	n conditions.	
1. IDENTIFICATION (AGREEMEN		2. AFF	ECTED OUTF	ALLS	3. BRIEF	DESCRIPTION	OF PROJECT	T 4. I	INAL COMPL	IANCE DATE
	.,	a. NO.	b. SOURCE OF	DISCHARGE				a. f	REQUIRED b	. PROJECTED
Site Remediation	Program	C01	Perchloroe		NAPL Recover	y/Groundwate	er Remediat	ion	20	25
LPC# 0311625023			contaminat water.	ed ground						
,					,					
				1						
				l						
									Į.	
		1						1		
								- 1		
. OPTIONAL: You	may attach add	itional sheets	describing an	v additional wa	ater pollution cor	ntrol programe	(or other envi	ronmental proj	ects which ma	v affect vo
o. OPTIONAL: You in discharges) you no construction.										

EPA I.D. NUMBER (copy from Item I of Form I)
IL0005126

CONTINI	ICD	EDOM	DACE	2

V. INTAKE AND EFFLUENT CHARACTER			
NOTE: Tables V-A, V-B, and V	/-C are included on separate sheets numbe		
 Use the space below to list any of the from any outfall. For every pollutant you 	pollutants listed in Table 2c-3 of the instruct u list, briefly describe the reasons you believ	ctions, which you know or have reason to be the it to be present and report any analytical of	elieve is discharged or may be discharged data in your posses sion.
1. POLLUTANT	2. SOURCE	1. POLLUTANT	2. SOURCE
N/A			
		Y	
			136
P. Committee of the com			
r .			=
			-
3	1		
,			
			_
VI. POTENTIAL DISCHARGES NOT COV	ERED BY ANALYSIS		
		ou currently use or manufacture as an interr	mediate or final product or byproduct?
YES (list all such pollutants	below) ✓	NO (go to Item VI-B)	
			-
	*		
*	7		-
100			
			. ,

CONTINUED FROM THE FRONT			
VII. BIOLOGICAL TOXICITY TESTING DATA	A		
Do you have any knowledge or reason to be	lieve that any biological test for acute or chronic toxic	ity has been made on any of your di	scharges or on a receiving water in
II. CONTRACT ANALYSIS INFORMATION ere any of the analyses reported in Item V performed by a contract laboratory or consulting firm? YES (ist the name, address, and telephone number of, and pollutants analyzed by. A NAME B. ADDRESS C. TELEPHONE (ist) your discharges or on a receiving water in a rece			
YES (identify the test(s) and de	scribe their purposes below)	NO (go to Section VIII)	
+:			А.
VIII CONTRACT ANALYSIS INFORMATION			
11/10-74			
Were any of the analyses reported in Item V	performed by a contract laboratory or consulting firm	1?	
YES (list the name, address, an	d telephone number of, and pollutants analyzed by,	NO (go to Section LX)	
each such laboratory or fir	m below)		
A. NAME	B. ADDRESS		
First Environmental Laboratory		(630) 728-1200	See Appendices A thru E
	Rapelville, 15 00303		_
			1
			i
		Į.	
		ĺ	1
			1
		4	
		1	
			ł
			1
	<u> </u>		
IX. CERTIFICATION			
	nent and all attachments were prepared under my di		
qualified personnel properly gather and ev	aluate the information submitted. Based on my inq	uiry of the person or persons who	manage the system or those persons
directly responsible for gathering the inform	ation, the information submitted is, to the best of my information, including the possibility of fine and impr	knowledge and belief, true, accurat	e, and complete. I am aware that there
A. NAME & OFFICIAL TITLE (type or print)	miornauon, moldonig tila possibility of fille and impr	B. PHONE NO. (area code & no.)	
Michael J. Martino, Terminal	Manager	(630) 257-3954	
C. SIGNATURE		D. DATE SIGNED	

EPA Form 3510-2C 8-90

PAGE 4 of 4

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same format*) instead of completing these pages.

SEE INSTRUCTIONS.

EPA I.D. NUMBER (copy from liem 1 of Form 1)
IL0005126

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C)

OUTFALL NO.

PART A -You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

	l l			2. EFFLU		3. UNITS (specify if blank)		4. INTAKE (optional)				
	a. MAXIMUM DAILY VALUE		b. MAXIMUM 30 DAY VALUE (if available)			c. LONG TERM AVRG. VALUE (if available)				a. LONG TERM AVERAGE VALUE		- NO OF
1. POLLUTANT	(1) CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Biochemical Oxygen Demand (BOD)	9	N/A	9	N/A	3.5	N/A	12	mg/L	N/A	N/A	N/A	N/A
b. Chemical Oxygen Demand (COD)	23	N/A	23	N/A	23	N/A	1	mg/L	N/A	N/A	N/A	N/A
c. Total Organic Carbon (TOC)	3.1	N/A	3.1	N/A	3.1	N/A	1	mg/L	N/A	N/A	N/A	N/A
d. Total Suspended Solids (7SS)	44	N/A	44	N/A	16.32	N/A	12	mg/L	N/A	N/A	N/A	N/A
e. Ammonia (as N)	0.71	N/A	0.71	N/A	0.24	N/A	12	mg/L	N/A	N/A	N/A	N/A
f. Flow	VALUE 3.52	8	VALUE 3.4	1	VALUE 0.64 260		260	MGD	N/A	VALUE N/A		N/A
g. Temperature (winter)	VALUE 2	MI	VALUE N/A		VALUE N/A		13	N/A°C		VALUE N/A		N/A
h. Temperature (summer)	VALUE 27		VALUE N/A	1	VALUE N/A		13	N/A°C	1983	VALUE N/A		N/A
i. pH	MINIMUM 7.29	MAXIMUM 8.79	MINIMUM N/A	MAXIMUM N/A			52	, STANDARI	OUNÎTS			

PART B — Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instructions for additional details and requirements.

	2. MA	RK "X"			3.	EFFLUENT				4. UNI	TS	5, INT.	AKE (option	al)
1. POLLUTANT AND	a.	b.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availal		c. LONG TERM A' (if availa					a. LONG TERM / VALUE		
CAS NO. (if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Bromide (24959-67-9)		X												
b. Chlorine, Total Residual	X		0.2	N/A	0.2	N/A	0.2	N/A	52	mg/L	N/A	N/A	N/A	N/A
c. Color		X												
d. Fecal Coliform		X										#3.45		
e. Fluoride (16984-48-8)		X												
f. Nitrate-Nitrite (as N)		X												

ITEM V-B CONTINUED FROM FRONT

1. POLLUTANT	2. MA	RK "X"				EFFLUENT				4. UNI	rs	5. INT	AKE (option	al)
AND CAS NO.	a.	b.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM AV (if availa		d. NO. OF	a. CONCEN-		a. LONG TE AVERAGE V	ALUE	L NO 05
(if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSE
g. Nitrogen, Total Organic (as M)		X												
h. Oil and Grease	X		N/A	N/A	5	N/A	0.75	N/A	12	mg/L	N/A	N/A	N/A	N/A
i. Phosphorus (as P), Total (7723-14-0)		X										_		
j. Radioactivity														
(1) Alpha, Total		X										111111111111111111111111111111111111111		
(2) Beta, Total		X		i i										
(3) Radium, Total		X						-						
(4) Radium 226, Total		X												
k. Sulfate (as SO ₄) (14808-79-8)		X	1											
t. Sulfide (as S)		X												
m. Sulfite (as SO ₃) (14265-45-3)		X									A)			
n. Surfactants		X								Ī				
o. Aluminum, Total (7429-90-5)		X		7.74.700000										
p. Barium, Total (7440-39-3)	X		N/A	N/A	0.06	N/A	0.02	N/A	4	mg/L	N/A	N/A	N/A	N/A
q. Boron, Total (7440-42-8)		X												
r. Cobalt, Total (7440-48-4)		X					H			V.				
s. Iron, Total (7439-89-6)	X		N/A	N/A	0.84	N/A	0.39	N/A	12	mg/L	N/A	N/A	N/A	N/A
t. Magnesium, Total (7439-95-4)		X				**								
u. Molybdenum, Total (7439-98-7)		X	-				*							
v. Manganese, Total (7439-96-5)		X												
w. Tin, Total 7440-31-5)		X												
x. Titanium, Total (7440-32-6)		X	-	-										

EPA I.D. NUMBER (copy from Item 1 of Form 1)	OUTFALL NUMBER
IL0005126	001

PART C - If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions), mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2,4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part; please review each carefully. Complete one table (all 7 pages) for each outfall. See instructions for additional details and requirements.

	2	. MARK "X"					FFLUENT				4. UN	ITS	5. INTA	KE (option	al)
1. POLLUTANT AND	a.	b.	c.	a. MAXIMUM DAI	LY VALUE	b. MAXIMUM 30 C (if availab		c. LONG TERM VALUE (if ava					a. LONG TI AVERAGE V		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. C
METALS, CYANID	, AND TOT	AL PHENO	LS					···							
1M. Antimony, Total (7440-36-0)	X		X			7			ī						
2M. Arsenic, Total (7440-38-2)	X		X												
3M. Beryllium, Total (7440-41-7)	X		X		XX = 3-2-3						17				
4M. Cadmium, Total (7440-43-9)	X		X		201 31		- U								
5M. Chromium, Total (7440-47-3)	X		X												
6M. Copper, Total (7440-50-8)	X	X		N/A	N/A	0.004	N/A	0.002	N/A	4	mg/L	N/A	N/A	N/A	N/A
7M. Lead, Total (7439-92-1)	X		X						(9)						
BM, Mercury, Total (7439-97-6)	X		X							_					
9M. Nickel, Total (7440-02-0)	X		X												
10M, Selenium, Total (7782-49-2)	X		X												
11M. Silver, Total 7440-22-4)	X		X												
12M. Thallium, Total (7440-28-0)	X		X												
13M. Zinc, Total (7440-66-6)	X	X		N/A	N/A	0.0227	N/A	0.0225	N/A	4	mg/L	N/A	N/A	N/A	N/A
14M. Cyanide, Total (57-12-5)	X		X												
15M. Phenols, Total	X		X												
DIOXIN															
2,3,7,8-Tetra- hlorodibenzo-P- Dioxin (1764-01-6)	X		X	DESCRIBE RESU	LTS										

CONTINUED FROM PAGE 3 OF FORM 2-C

CONTINUED FROM THE FRONT

CONTINUED FROM		. MARK "X					FFLUENT				4. UN	ITS	5. INTA	KE (optiona	<i>il</i>)
1. POLLUTANT AND	a.	b.	С.	a. MAXIMUM DA	LY VALUE	b. MAXIMUM 30 I	DAY VALUE	c. LONG TERM VALUE (if ave	AVRG.				a. LONG T	ERM /ALUE	
CAS NUMBER (if available)	TESTING	BELIEVED PRESENT	c. BELIEVED ABSENT	(1) CONCENTRATION		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION		d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	- VOLATIL	E COMPO	JNDS					du		dui-				(-)	-
1V. Accrolein (107-02-8)	X	i.	X							*1					
2V. Acrylonitrile (107-13-1)	X		X						Ī						
3V. Benzene (71-43-2)	X		X												
4V. Bis (Chloro- methyl) Ether (542-88-1)	X		X												
5V. Bromoform (75-25-2)	X		X												
6V. Carbon Tetrachloride (56-23-5)	X		X											-	
7V. Chlorobenzene (108-90-7)	X		X							31111111111111					
8V. Chlorodi- bromomethane (124-48-1)	X		X				3 8								
9V. Chloroethane (75-00-3)	X	7	X												
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	X		X			,									
11V. Chloroform (67-66-3)	X		X												
12V. Dichloro- bromomethane (75-27-4)	X		X												
13V. Dichloro- difluoromethane (75-71-8)	X		X				1	11 12 12 12 12 12 12 12 12 12 12 12 12 1							
14V. 1,1-Dichloro- ethane (75-34-3)	X		X											=	
15V. 1,2-Dichloro- ethane (107-06-2)	X		X			V									
16V. 1,1-Dichloro- ethylene (75-35-4)	X		X												
17V. 1,2-Dichloro- propane (78-87-5)	X		X												
18V. 1,3-Dichloro- propylene (542-75-6)	X		X)							
19V. Ethylbenzene (100-41-4)	X		X											Su-Su	
20V. Methyl Bromide (74-83-9)	X		X					-3330							
21V. Methyl Chloride (74-87-3)	X		X				2.0							.,.	

CONTINUED FROM PAGE V-4 2. MARK "X" 3. EFFLUENT 4. UNITS 5. INTAKE (optional) 1. POLLUTANT b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. a. LONG TERM AND a, MAXIMUM DAILY VALUE VALUE (if available) (if available) **AVERAGE VALUE** CAS NUMBER d. NO. OF a. CONCEN-TESTING BELIEVED BELIEVED b. NO. OF TESTING BELIEVED BELIEVED (1)
REQUIRED PRESENT ABSENT CONCENTRATION (1) CONCENTRATION (1) CONCENTRATION (1) CONCENTRATION (if available) ANALYSES TRATION b. MASS ANALYSES (2) MASS (2) MASS (2) MASS GC/MS FRACTION - VOLATILE COMPOUNDS (continued) 22V. Methylene Chloride (75-09-2) 23V. 1,1,2,2-Tetrachloroethane (79-34-5) 24V. Tetrachloroethylene (127-18-4) 25V. Toluene (108-88-3) 26V. 1,2-Trans-Dichloroethylene (156-60-5) 27V, 1,1,1-Trichloroethane (71-55-6) 28V. 1,1,2-Trichloroethane (79-00-5) 29V Trichloroethylene (79-01-6) 30V. Trichlorofluoromethane (75-69-4) 31V. Vinyl Chloride (75-01-4) GC/MS FRACTION - ACID COMPOUNDS 1A. 2-Chlorophenol (95-57-8) 2A. 2,4-Dichlorophenol (120-83-2) 3A, 2.4-Dimethylphenol (105-67-9) 4A, 4.6-Dinitro-O-Cresol (534-52-1) 5A, 2,4-Dinitrophenol (51-28-5) 6A. 2-Nitrophenol (88-75-5) 7A. 4-Nitrophenol

EPA Form 3510-2C (8-90)

(100-02-7) 8A, P-Chloro-M-Cresol (59-50-7) 9A, Pentachlorophenol (87-86-5) 10A. Phenol (108-95-2) 11A. 2,4,6-Trichlorophenol (88-05-2)

CONTINUED FROM THE FRONT

	M THE FRO	. MARK "X		7.00		3. E	FFLUENT				4. UN	ITS	5. INTA	KE (optiona	1)
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I		c. LONG TERM VALUE (if ava					a. LONG TO AVERAGE V		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION		(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	- BASE/NI	EUTRAL CO	MPOUND												
1B. Acenaphthene (83-32-9)	X		X												
2B. Acenaphtylene (208-96-8)	X		X												
3B. Anthracene (120-12-7)	X		X												
4B. Benzidine (92-87-5)	X		X												
5B. Benzo (a) Anthracene (56-55-3)	X		X												
6B. Benzo (a) Pyrene (50-32-8)	X		X												
7B. 3,4-Benzo- fluoranthene (205-99-2)	X		X	+											-
8B. Benzo (<i>ghi</i>) Perylene (191-24-2)	X		X												
9B, Benzo (k) Fluoranthene (207-08-9)	X		X				-								
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	X		X		S. MAN										
11B. Bis (2-C'hloro- ethyl) Ether (111-44-4)	X		X												
12B. Bis (2- ('hloroisopropyl) Ether (102-80-1)	X		X		411										
13B. Bis (2-Ethyl- hexyl) Phthalate (117-81-7)	X		X												ii ii
14B. 4-Bromophenyl Phenyl Ether (101-55-3)	X		X								\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
15B. Butyl Benzyl Phthalate (85-68-7)	X		X												
16B, 2-Chloro- naphthalene (91-58-7)	X		X	,											
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	X		X		600										
18B. Chrysene (218-01-9)	X		X		700										
19B. Dibenzo (a,h) Anthracene (53-70-3)	X		X												
20B. 1,2-Dichloro- benzene (95-50-1)	X		X												
21B. 1,3-Di-chloro- benzene (541-73-1)	X		X												

CONTINUED FROM PAGE V-6

		2. MARK "X					FFLUENT	13			4. UN	TS		KE (optiona	n()
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA	LY VALUE	b. MAXIMUM 30 I	DAY VALUE	c. LONG TERM VALUE (if ava	l AVRG. ulable)				a. LONG T AVERAGE V		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS		a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSE
GC/MS FRACTION	- BASE/N	EUTRAL CO	OMPOUND	S (continued)											
22B. 1,4-Dichloro- benzene (106-46-7)	X		X												
23B. 3,3-Dichloro- benzidine (91-94-1)	X		X												
24B. Diethyl Phthalate (84-66-2)	X		X												
25B. Dimethyl Phthalate (131 -11-3)			X												
26B. Di-N-Butyl Phthalate (84-74-2)	\times		X												
27B. 2,4-Dinitro- toluene (121-14-2)	X		X												
28B. 2,6-Dinitro- toluene (606-20-2)	X		X												
29B. Di-N-Octyl Phthalate (117-84-0)	X		X						O.						
30B. 1,2-Diphenyl- hydrazine (as Azo- benzene) (122-66-7)	X		X				-1001				9				
31B. Fluoranthene (206-44-0)	X		X												
32B. Fluorene (86-73-7)	X		X												
33B. Hexachloro- benzene (118-74-1)	X		X												
34B. Hexachloro- butadiene (87-68-3)	X		X				44.5								
35B. Hexachloro- cyclopentadiene (77-47-4)	X		X												
36B Hexachloro- ethane (67-72-1)	X		X							-					
37B. Indeno (1,2,3-cd) Pyrene (193-39-5)	X		X												
38B. Isophorone (78-59-1)	X		X												
39B. Naphthalene (91-20-3)	X		X												
40B. Nitrobenzene (98-95-3)	X		X												
41B. N-Nitro- sodimethylamine (62-75-9)	X		X												
42B. N-Nitrosodi- N-Propylamine (621-64-7)	X		X												

CONTINUED FROM THE FRONT

CONTINUED FRO		2. MARK "X				3. E	FFLUENT				4. UN	ITS	5. INTA	KE (optiona	7)
1. POLLUTANT AND CAS NUMBER	a.	b.	С.	a. MAXIMUM DA	LY VALUE	b. MAXIMUM 30 [(if availal	DAY VALUE ble)	c. LONG TERM VALUE (if ave	ailable)	d. NO. OF	a. CONCEN-		a. LONG T AVERAGE V		b. NO. OF
(if available)	TESTING REQUIRED	BELIEVED PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES		b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSE:
GC/MS FRACTION	I – BASE/N	EUTRAL CO	MPOUND	S (continued)											
43B. N-Nitro- sodiphenylamine (86-30-6)	X		X												
44B, Phenanthrene (85-01-8)	X		X												
458. Pyrene (129-00-0)	X		X	#25										¥	
46B. 1,2,4-Tri- chlorobenzene (120-82-1)	X		X					U/A 1							
GC/MS FRACTION	N - PESTIC	IDES													
1P. Aldrin (309-00-2)	X		X												
2P. α-BHC (319-84-6)	X		X			100000			2007 00						
3P. β-BHC (319-85-7)	X		X					1							
4P. γ-BHC (58-89-9)	X		X												
5P. 8-BHC (319-86-8)	X		X								şi .				
6P. Chlordane (57-74-9)	X		X												
7P. 4,4'-DDT (50-29-3)	X	141	X					-							
8P. 4,4'-DDE (72-55-9)	X		X						1.51						
9P. 4,4'-DDD (72-54-8)	X		X												
10P. Dieldrin (60-57-1)	X		X												
11P, α-Enosulfan (115-29-7)	X		X					410 S		2007					
12P. β-Endosulfan (115-29-7)	X		X												
13P. Endosulfan Sulfate (1031-07-8)	X	2	X												
14P. Endrin (72-20-8)	X		X	110000											
15P. Endrin Aldehyde (7421-93-4)	X		X												
16P. Heptachlor (76-44-8)	X		X				N T								

	20171111150 57011 2105 110				PA I.D. NUMBE	R (copy from Item 1	of Form 1)	OUTFALL NUME	BER						
CONTINUED FROM	M PAGE V-8	3			I	L0005126		00	1						
	2	. MARK "X"				3. E	FFLUENT				4. UN	TS	5, INTA	KE (optional	0
1. POLLUTANT AND	a.	b.	C.		DAILY VALUE	b. MAXIMUM 30 [(if availal		c. LONG TERM VALUE (if ava		4 NO OF	- CONCEN		a. LONG T		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT		(1) CONCENTRATI	ON (2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	- PESTICII	DES (contin	ued)												
17P. Heptachlor Epoxide (1024-57-3)	X		X												
18P. PCB-1242 (53469-21-9)	X		X												
19P. PCB-1254 (11097-69-1)	X		X									1			
20P. PCB-1221 (11104-28-2)	X		X												
21P. PCB-1232 (11141-16-5)	X		X							4					
22P. PCB-1248 (12672-29-6)	X		X					(A)							
23P. PCB-1260 (11096-82-5)	X		X												
24P. PCB-1016 (12674-11-2)	X		X												
25P. Toxaphene (8001-35-2)	X		X					4							

PAGE V-9

EPA Form 3510-2C (8-90)

EPA I.D. NUMBER (copy from Item 1 of Form 1)

Form Approved.
OMB No. 2040-0086.
Approval expires 3-3 1-98.

Please print or type in the unshaded areas only.

IL0005126

2C

U.S. ENVIRONMENTAL PROTECTION AGENCY
APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER
EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURE OPERATIONS

OUTFALL NUMBER ((Ist)) 1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC. 1. DEG. 3. MIN. 3. SEC. 1. DEG	NPDES					IIIANOI AO		Consolidated	Permits Program	n			
OUT-FALL NUMBER (list) 1. DEG 2.MIN 3.SEC. 1.DEG 1.DE	. OUTFALL	LOCATION									20/20/20	4000000 00000	
1. DEG 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC. D. RECEIVING MATER (name) 41.00 41.00 27.87 87.00 57.00 8.06 Internal outfall drains to 0.013 2016 FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operative treatment units, and outfalls. If a water balance cannot be determined (e.g., for cortain mining activities), provide a pictorial description of the nature and amount of sources of water and any collection or treatment measures. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling wand storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional shee necessary. OUT- 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT TABLE 2C-1 Groundwater-Perc/DNAPL Remediation 3 gpd 1-F Filtering Unit 3-H Plachange to surface water (retention pond)									the receiving wa	ater.	10/2	S S N	371
Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment of labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operative treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of sources of water and any collection or treatment measures. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling was and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional shee necessary. OUT- OU						-				D BECE	WATE	D ()	
FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment u labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operation treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of sources of water and any collection or treatment measures. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling we and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional shee necessary. OUT- 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT D. (list) a. OPERATION (list) b. LIST CODES FR TABLE 2C-1 Filtering Unit 3-H Carbon Absorption 2-A Discharge to surface water (retention pond)	(IIS	st)	1. DEG.	2. MIN.	3. SEC.	1. DEG.	2. MIN.						2 2010
FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment us labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operation treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of sources of water and any collection or treatment measures. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling we and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional shee necessary. OUT- 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT D. LIST CODES FR TABLE 2C-1 Filtering Unit 3-B Filtering Unit 3-B Plischarge to surface water (setention pond)	01		41.00	41.00	27.87	87.00	57.00	8.06	Internal	outfall	drains	to -001	9 CO10
Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment u labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operation treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of sources of water and any collection or treatment measures. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling we and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional shee necessary. OUT- 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT D. AVERAGE FLOW (include units) a. OPERATION (list) B. AVERAGE FLOW (include units) Carbon Absorption 2-A Discharge to surface water (setention pond)													И
Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment u labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operation treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of sources of water and any collection or treatment measures. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling we and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional shee necessary. OUT- 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT D. AVERAGE FLOW (include units) a. OPERATION (list) B. AVERAGE FLOW (include units) Carbon Absorption 2-A Discharge to surface water (setention pond)					48						BOVV	WPCIPER	MIT SECT
Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment of labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operative treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of sources of water and any collection or treatment measures. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling wastewater runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheen necessary. OUT- 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT Counties a. OPERATION (list) 4. OPERATION (list) 5. LIST CODES FR TABLE 2C-1 Corbon Absorption 1-F Piltering Unit Carbon Absorption 2-A Discharge to surface water (retention pond)					-						-		
Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment of labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operative treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of sources of water and any collection or treatment measures. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling wastewater runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheen necessary. OUT- 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT Counties a. OPERATION (list) 4. OPERATION (list) 5. LIST CODES FR TABLE 2C-1 Corbon Absorption 1-F Piltering Unit Carbon Absorption 2-A Discharge to surface water (retention pond)										-:			
Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment of labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operative treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of sources of water and any collection or treatment measures. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling wastewater runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheen necessary. OUT- 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT Counties a. OPERATION (list) 4. OPERATION (list) 5. LIST CODES FR TABLE 2C-1 Corbon Absorption 1-F Piltering Unit Carbon Absorption 2-A Discharge to surface water (retention pond)			31										-
For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling wastewater runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional shee necessary. OUT- OUT- FALL O. (list) a. OPERATION(S) CONTRIBUTING FLOW b. AVERAGE FLOW (include units) a. OPERATION (list) Groundwater-Perc/DNAPL Remediation 3 gpd air stripper 1-F Filtering Unit Carbon Absorption Discharge to surface water (retention pond)	Attach a labeled t	line drawing to correspon	showing the	water flow the detailed des	rough the fac criptions in It	cility. Indicate em B. Constr	sources of in	alance on the	line drawing by	showing aver	rage flows be	tween intake	es, operation
OUT- FALL O. (list) a. OPERATION(S) CONTRIBUTING FLOW b. AVERAGE FLOW (include units) a. DESCRIPTION a. DESCRIPTION b. LIST CODES FR TABLE 2C-1 Filtering Unit Carbon Absorption Discharge to surface water (retention pond)	For each	of water and n outfall, pro rm water rur	l any collection	ption of: (1)	nt measures. All operations	contributing	wastewater	to the effluen	t, including proc	ess wastewa	ter, sanitary v	wastewater, o	cooling water
D. AVERAGE FLOW O. (list) a. OPERATION (list) b. AVERAGE FLOW (include units) a. DESCRIPTION TABLE 2C-1 Groundwater-Perc/DNAPL Remediation 3 gpd ir stripper Filtering Unit Carbon Absorption Discharge to surface water (retention pond)		ıy.	2. OPER	ATION(S) CC	NTRIBUTIN	G FLOW				3. TREA	TMENT	*******	
1 Piltering Unit 3-H Carbon Absorption 2-A Discharge to surface water (retention pond)	. 001- FALL O. (<i>list</i>)	a. (AVERAGE F			a. DESCR				
Filtering Unit 3-H Carbon Absorption 2-A Discharge to surface water (retention pond)	1 G	roundwater	-Perc/DNAPL	Remediation	3 gpd			air strippe	er			1-F	T
Discharge to surface water (retention pond)	_ -		-11		***			Filtering U	Init			3-н	
Discharge to surface water (retention pond)								Carbon Abso	orption			2-A	1
					+			Discharge t	o surface wate	r (retentio	n pond)		+
							_					+ '-	+
	-			-11100		-					-	-	+
	-								1000			ļ	
	_												1

	r			117					200				
	-									-		 	+
	-				-							-	+
	-				4			-				-	
	-												
			101										
	T												
	-							1				10000	1
	H												+
								 					-
	L							-				-	+

OFFICIAL USE ONLY (effluent guidelines sub-categories)

CONTINUED FF	ROM THE FI	RONT									
C. Except for st	torm runoff, YES (comp			f the dischar	ges described i	n Items II-A or B in		asonal?			
	_				3.1	FREQUENCY	ecc.		4. FLOW		
					a. DAYS P					VOLUME	=
4 0155411			PERATION(s)	u.	WEEK	b. MONTHS		ATE (in mgd)		vith urits)	O DUBATION
1. OUTFALL NUMBER (list)	1	CONTR	RIBUTING FLOV (list)	v	(specify average)		1. LONG TERM AVERAGE	2. MAXIMUM DAILY	1. LONG TERM AVERAGE	2. MAXIMUM DAILY	C. DURATION (in days)
										l,	
	1				4						
									ĺ		
								1	1	1	
					ľ						
(0)					i						
									1		
								1			
			- 1						1		
		100-0					J.,			I	
III. PRODUCTIO											
A. Does an efflu				by EPA und	er Section 304	of the Clean Water		ur facility?			
	YES (compl					NO (go to Se					
B. Are the limits	YES (compi		-	line express	ed in terms of p	roduction (or other NO (go to Se		eration)?			
			list the quan dicate the aff			tual measurement	of your level of	production, ex	pressed in the	terms and unit	s used in the
			1. AV	ERAGE DAI	LY PRODUCTI	ON			2 AF	FECTED OUT	ALLS
a. QUANTITY	PER DAY	b. UNITS	OF MEASU	RE	c. OPERA	ATION, PRODUCT	, MATERIAL, E	TC.		ist outfall numbe	
				_		(specify)			-		
									,		
				- 1							
									ľ		
1											
									1		
									I.		
Į											
l											
	entitions and	200			18-18	···					
IV. IMPROVEM		hu anu Fa	land Ctata	r local auth	arity to most a		achadula far	the construction	n unandian e	a an anationa o	(westewater
						any implementation th may affect the di					
				orders, enfo	rcement compli	ance schedule lett		court orders,	and grant or loa	n conditions.	
<u>K</u>	YES (comp	lete the follo	wing table)			NO (go to Ite	m IV-B)				
1. IDENTIFICA	TION OF CO	ONDITION,	2. AFI	ECTED OU	TFALLS	2 00/50	DESCRIPTION	OE DDO IEC	_ 4.1	FINAL COMPL	ANCE DATE
AGRE	EMENT, ET	C.	a. NO.	b. SOURCE	OF DISCHARGE	J. BRICE	DESCRIPTION	OF PROJEC	_	REQUIRED b	PROJECTED
Site Remedia	ation Pro	gram	C01	Perchlore	pethylene	DNAPL Recover	ry/Groundwat	er Remediat	ion	20	25
LPC# 0311625				contamina water	ated ground						
-				#ucci							(1)
									- 1	ļ.	
į.						1			1		
						1					
B ODTIONAL	Vou mov	attach addi	tional chasts	describing	any additional	water pollution co	introl programs	for other and	imprented are	octs which ar-	v affect vous
discharges)	you now ha					ach program is nov					
construction						X					
	MARK "X"	F DESCRI	PTION OF AL	DITIONAL	CONTROL PRO	OGRAMS IS ATTA	CHED				

EPA I.D. NUMBER (copy from Item I of Form I)
IL0005126

CONTINUED FROM PAGE 2	•

V. INTAKE AND EFFLUENT CHARACTER	RISTICS		
NOTE: Tables V-A, V-B, and V	/-C are included on separate sheets number		
 Use the space below to list any of the from any outfall. For every pollutant you 	pollutants listed in Table 2c-3 of the instructure list, briefly describe the reasons you belie	ctions, which you know or have reason to b we it to be present and report any analytical	elieve is discharged or may be discharged data in your possession.
1. POLLUTANT	2. SOURCE	1. POLLUTANT	2. SOURCE
N/A	N/A	N/A	N/A
A			₹
=			1
		_	× :
	a a		
		The second second	
¥			
VI. POTENTIAL DISCHARGES NOT COV Is any pollutant listed in Item V-C a substa		ou currently use or manufacture as an inter	mediate or final product or byproduct?
YES (list all such pollutants		NO (go to Item VI-B)	
			1
4			
	χ		
			÷
- 7			
11	*		11

CONTINUED FROM THE FRONT	MANAGE MA		
VII. BIOLOGICAL TOXICITY TESTING DAT			
Do you have any knowledge or reason to be relation to your discharge within the last 3 ye	lieve that any biological test for acute or chronic toxic	ity has been made on any of your dis	scharges or on a receiving water in
YES (identify the test(s) and de		NO (go to Section VIII)	
n			
	a contract of the contract of		
-			
360			
_			
MIL CONTRACT ANALYSIS INFORMATION			
VIII. CONTRACT ANALYSIS INFORMATION			WWW.
_	performed by a contract laboratory or consulting firm		
	nd telephone number of, and pollutants analyzed by,	NO (go to Section IX)	
each such laboratory or fit	m below)	C. TELEPHONE	D. POLLUTANTS ANALYZED
A. NAME	B. ADDRESS	(area code & no.)	(list)
First Environmental Laboratory	1600 Shore Road	(630) 728-1200	тос
	Naperville, IL 60563		1,2-Dichloroethane
	=		
T		<u> </u>	
		-	
		1	
		1	
		1	
		i i	
		1	
-			
	{		
		9	
			.00
IX. CERTIFICATION			
		iraction or supervision in accordance	with a system designed to assure that
	nent and all attachments were prepared under my di		
I certify under penalty of law that this document of the qualified personnel properly gather and even	valuate the information submitted. Based on my inc	quiry of the person or persons who	
I certify under penalty of law that this docun qualified personnel properly gather and ev directly responsible for gathering the inform		quiry of the person or persons who knowledge and belief, true, accurate	
I certify under penalty of law that this docun qualified personnel properly gather and ev directly responsible for gathering the inform	aluate the information submitted. Based on my inc ation, the information submitted is, to the best of my	quiry of the person or persons who knowledge and belief, true, accurate	
I certify under penalty of law that this docun qualified personnel properly gather and ev directly responsible for gathering the inform are significant penalties for submitting false	raluate the information submitted. Based on my inquisition, the information submitted is, to the best of my information, including the possibility of fine and impring the pos	quiry of the person or persons who knowledge and belief, true, accurated isonment for knowing violations.	
I certify under penalty of law that this docum qualified personnel property gather and ev directly responsible for gathering the informare are significant penalties for submitting false A. NAME & OFFICIAL TITLE (type or print) Michael J. Martino, Facility M	raluate the information submitted. Based on my inquisition, the information submitted is, to the best of my information, including the possibility of fine and impring the pos	puiry of the person or persons who knowledge and belief, true, accurate isonment for knowing violations. B. PHONE NO. (area code & no.) (630) 257-3954	
I certify under penalty of law that this document of the personnel property gather and even directly responsible for gathering the informare significant penalties for submitting false. A. NAME & OFFICIAL TITLE (type or print)	raluate the information submitted. Based on my inquisition, the information submitted is, to the best of my information, including the possibility of fine and impring the pos	puiry of the person or persons who knowledge and belief, true, accuratesonment for knowing violations. B. PHONE NO. (area code & no.) (630) 257-3954 D. DATE SIGNED	
I certify under penalty of law that this docum qualified personnel properly gather and ev directly responsible for gathering the informare are significant penalties for submitting false A. NAME & OFFICIAL TITLE (type or print) Michael J. Martino, Facility	raluate the information submitted. Based on my inquisition, the information submitted is, to the best of my information, including the possibility of fine and impring the pos	puiry of the person or persons who knowledge and belief, true, accurate isonment for knowing violations. B. PHONE NO. (area code & no.) (630) 257-3954	

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same formal*) instead of completing these pages. SEE INSTRUCTIONS.

EPA I.D. NUMBER (copy from Item | of Form |)
IL0005126

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C)

OUTFALL NO.

PART A -You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

				2. EFFLU	ENT			3. UNI (specify if			4. INTAKE (optional)	
	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM AVR (if available		d. NO. OF	a. CONCEN-		a. LONG T AVERAGE		
1. POLLUTANT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Biochemical Oxygen Demand (BOD)	N/A	N/A	N/A	N/A	5.0	N/A	1	N/A	N/A	N/A	N/A	N/A
b. Chemical Oxygen Demand (<i>COD</i>)	N/A	N/A	N/A	N/A	< 10.0	N/A	1	N/A	N/A	N/A	N/A	N/A
c. Total Organic Carbon (TOC)	N/A	N/A	N/A	N/A	83.95	N/A	4	mg/L	N/A	N/A	N/A	N/A
d. Total Suspended Solids (733)	N/A	N/A	N/A	N/A	< 5.0	N/A	1	N/A	N/A	N/A	N/A	N/A
e. Ammonia (as N)	N/A	N/A	N/A	N/A	0.24	N/A	1	N/A	N/A	N/A	N/A	N/A
f. Flow	VALUE N/A		VALUE 0.000	08	VALUE 0.00003	3	12	MGD	N/A	VALUE N/A		N/A
g. Temperature (winter)	VALUE N/A		VALUE N/A		VALUE N/A		N/A	N/A °C		VALUE N/A		N/A
h. Temperature (summer)	VALUE N/A		VALUE N/A		VALUE N/A		N/A	N/A°C		VALUE N/A		N/A
i. pH	MINIMUM 8.08	MAXIMUM 8.08	MINIMUM N/A	MAXIMUM N/A			N/A	STANDARI	UNITS			

PART B — Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instructions for additional details and requirements.

	2. MAI	RK "X"			3.	EFFLUENT				4. UNI	TS	5. INT.	AKE (option	a()
1. POLLUTANT AND	a. ⁻	b.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availal		c. LONG TERM AV (if availal					a. LONG TERM / VALUE		
CAS NO. (if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Bromide (24959-67-9)		X												
b. Chlorine, Total Residual		X											5	
c. Color		X												
d. Fecal Coliform		X						3311.	P.1					
e. Fluoride (16984-48-8)		X												
f. Nitrate-Nitrite (as M)		X												

ITEM V-B CONTINUED FROM FRONT

	2. MA	RK "X"			3.	EFFLUENT			- 600	4. UNI	rs	5. INT	AKE (option	al)
1. POLLUTANT AND	a	b.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa	DAY VALUE ble)	c. LONG TERM A'	VRG. VALUE				a. LONG TE AVERAGE V	ERM ALUE	
CAS NO. (if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
g. Nitrogen, Total Organic (as N)		X							- 4					
h. Oil and Grease	X		1				3		1					
i. Phosphorus (as P), Total (7723-14-0)		X				11				79			-	
j. Radioactivity														Ţ.
(1) Alpha, Total		X												
(2) Beta, Total		X		*****									0	
(3) Radium, Total		X		U					-					
(4) Radium 226, Total		X				F1 .								
k. Sutfate (as SO ₄) (14808-79-8)		X	9											
I. Sulfide (as S)		X						1 1						
m. Sulfite (as N) ₃) (14265-45-3)	15	X				2					×		25-	
n. Surfactants		X	p. 14											
o. Aluminum, Total (7429-90-5)		X				7								
p. Barium, Total (7440-39-3)		X												
q. Boron, Total (7440-42-8)		X												
r. Cobalt, Total (7440-48-4)		X	11						,4	11				
s. Iron, Total (7439-89-6)	X					. 4	0.08		1			71		
t. Magnesium, Total (7439-95-4)		×	1											
u. Molybdenum, Total (7439-98-7)		X				1								
v. Manganese, Total (7439-96-5)		X												
w. Tin, Total (7440-31-5)		X							1112					
x. Titanium, Total (7440-32-6)		X			- /									

EPA I.D. NUMBER (copy from Item I of Form I)	OUTFALL NUMBER
IL0005126	-C01

CONTINUED FROM PAGE 3 OF FORM 2-C

PART C - If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions), mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant if you know or have reason to believe it will be discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2,4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part; please review each carefully. Complete one table (all 7 pages) for each outfall. See instructions for additional details and requirements.

addition	al details ar	nd requirem	ents.												
		2. MARK "X					FFLUENT				4. UN	ITS		AKE (optiona	ıl)
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA	LY VALUE	b. MAXIMUM 30 I (if availa		c. LONG TERM VALUE (if av	ailable)		20110511		a. LONG T AVERAGE V		
CAS NUMBER (if avoilable)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
METALS, CYANIDI	E, AND TO	TAL PHENC	LS											×	
1M. Antimony, Total (7440-36-0)			X												
2M. Arsenic, Total (7440-38-2)			X												
3M. Beryllium, Total (7440-41-7)			X												
4M. Cadmium, Total (7440-43-9)			X												
5M. Chromium, Total (7440-47-3)			X												
6M. Copper, Total (7440-50-8)			X												
7M, Lead, Total (7439-92-1)			X					ii ii							
8M. Mercury, Total (7439-97-6)			X												
9M. Nickel, Total (7440-02-0)	•		X												
10M. Selenium, Total (7782-49-2)			X												
11M. Silver, Total (7440-22-4)			X												
12M. Thallium, Total (7440-28-0)			X												A.0
13M. Zinc, Total (7440-66-6)			X								31 700				
14M. Cyanide, Total (57-12-5)	¥		X												
15M. Phenols, Total			X				Of The State of th								
DIOXIN								1							
2,3,7,8-Tetra- chlorodibenzo-P- Dioxin (1764-01-6)			X	DESCRIBE RESU	ELTS						-				

CONTINUED FROM THE FRONT

4 00111174417		2. MARK "X					FFLUENT				4. UN	TS		KE (optiona	11)
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA	LY VALUE	b. MAXIMUM 30 l (if availa		c. LONG TERN VALUE (if ava	A AVRG. ailable)	4 NO OF	- CONCEN		a. LONG T AVERAGE V	ERM /ALUE	
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS		a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. O
GC/MS FRACTION	- VOLATIL	E COMPO	UNDS												
1V. Accrolein (107-02-8)			X												
2V. Acrylonitrile (107-13-1)			X												
3V. Benzene (71-43-2)			X												
4V. Bis (Chloro- methyl) Ether (542-88-1)			X												
5V. Bromoform (75-25-2)			X											- /	
6V. Carbon Tetrachloride (56-23-5)		44.17.1	X												
7V. Chlorobenzene (108-90-7)			X												
8V. Chlorodi- bromomethane (124-48-1)			X												
9V. Chloroethane (75-00-3)			X												
10V. 2-Chloro- ethylvinyl Ether (110-75-8)			X												
11V. Chloroform (67-66-3)			X												
12V. Dichloro- bromomethane (75-27-4)			X												
13V. Dichloro- difluoromethane (75-71-8)			X												
14V. 1,1-Dichloro- ethane (75-34-3)			X												
15V. 1,2-Dichloro- ethane (107-06-2)	X	X		N/A	N/A	N/A	N/A	< 0.005	N/A	4	mg/L	N/A	N/A	N/A	N/A
16V. 1,1-Dichloro- ethylene (75-35-4)			X												
17V. 1,2-Dichloro- propane (78-87-5)			X												
18V. 1,3-Dichloro- propylene (542-75-6)			X				/								
19V. Ethylbenzene (100-41-4)	-		X												
20V. Methyl Bromide (74-83-9)			X)				
21V. Methyl Chloride (74-87-3)			X												

CONTINUED FROM PAGE V-4

		2. MARK "X					FFLUENT				4. UN	ITS	5. INTA	KE (optiona	'n
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I		c. LONG TERM VALUE (if and			120		a. LONG TI AVERAGE V		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	- VOLATIL	E COMPO	JNDS (cont	(imed)											
22V. Methylene Chloride (75-09-2)			X												
23V. 1,1,2,2- Tetrachloroethane (79-34-5)			X												
24V. Tetrachloro- ethylene (127-18-4)			X												
25V. Toluene (108-88-3)			X												
26V. 1,2-Trans- Dichloroethylene (156-60-5)			X												
27V. 1,1,1-Trichloro- ethane (71-55-6)			X											. 8	
28V. 1,1,2-Trichloro- ethane (79-00-5)			X										.1.		
29V Trichloro- ethylene (79-01-6)			X						-						
30V. Trichloro- fluoromethane (75-69-4)			X												
31V. Vinyl Chloride (75-01-4)			X												
GC/MS FRACTION	- ACID CC	MPOUNDS													*
1A. 2-Chlorophenol (95-57-8)			X												
2A. 2,4-Dichloro- phenol (120-83-2)			X												
3A, 2,4-Dimethyl- phenol (105-67-9)			X												
4A. 4,6-Dinitro-O- Cresol (534-52-1)		-	X	-											
5A, 2,4-Dinitro- phenol (51-28-5)			X												
6A. 2-Nitrophenol (88-75-5)			X												
7A. 4-Nitrophenol (100-02-7)			X		-			71						1.5	
8A. P-Chloro-M- Cresol (59-50-7)			X												
9A. Pentachloro- phenoi (87-86-5)			X			- 72									
10A. Phenol (108-95-2)			X					- 111.							
11A. 2,4,6-Trichloro- phenol (68-05-2)	- "		X				-								

CONTINUED FROM THE FRONT

4 00111174117		2. MARK "X					FFLUENT				4. UN	IIS	5. INT/	KE (optiona	1)
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 ((if availal		VALUE (if ave	ailable)	1 110 05	- 00110511		a. LONG T AVERAGE \	/ALUE	
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OI
GC/MS FRACTION	- BASE/NI	EUTRAL CO	OMPOUND	s										-	
1B. Acenaphthene (83-32-9)			X												
2B. Acenaphtylene (208-96-8)			X												
3B. Anthracene (120-12-7)			X												
4B. Benzidine (92-87-5)			X			, X-3-1									
5B, Benzo (a) Anthracene (56-55-3)			X												
6B. Benzo (a) Pyrene (50-32-8)			X												
7B. 3,4-Benzo- fluoranthene (205-99-2)		E	X												
8B. Benzo (ghi) Perylene (191-24-2)			X												
9B. Benzo (k) Fluoranthene (207-08-9)	-	-	X					1							
10B. Bis (2-('hloro- ethoxy) Methane (111-91-1)			X												
11B. Bis (2-('hloro- ethyl) Ether (111-44-4)		Y.	X			(A.		-							
12B. Bis (2- Chloroisopropyl) Ether (102-80-1)			X			2									
13B. Bis (2-Ethyl- hexyl) Phthalate (117-81-7)			X			16									
14B. 4-Bromophenyl Phenyl Ether (101-55-3)			X												
15B, Butyl Benzyl Phthalate (85-68-7)			X												
16B. 2-Chloro- naphthalene (91-58-7)			X												
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	givoù i		X									- 4			
18B. Chrysene (218-01-9)			X							100	-				
19B. Dibenzo (a,li) Anthracene (53-70-3)			X												
20B. 1,2-Dichloro- benzene (95-50-1)			X					-11					1))		
21B. 1,3-Di-chloro- benzene (541-73-1)			X												

CONTINUED FROM		MARK "X		r'		3.5	FFLUENT				4. UN	ITS	5 INTA	KE (optiona	-0
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa	DAY VALUE	c. LONG TERM VALUE (if ave				113	a. LONG T AVERAGE V	ERM	
CAS NUMBER (if available)	TESTING REQUIRED		BELIEVED ABSENT	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	N - BASE/N	EUTRAL C	OMPOUND	S (continued)											
22B. 1,4-Dichloro- benzene (106-46-7)			X												
23B. 3,3-Dichloro- benzidine (91-94-1)			X												
24B. Diethyl Phthalate (84-66-2)			X												
25B. Dimethyl Phthalate (191 -11-3)			X												
26B. Di-N-Butyl Phthalate (84-74-2)			X							- '''					
27B. 2,4-Dinitro- toluene (121-14-2)			X			-									
28B. 2,6-Dinitro- toluene (606-20-2)			X												
29B. Di-N-Octyl Phthalate (117-84-0)			X												
30B. 1,2-Diphenyl- hydrazine (as Azo- benzene) (122-66-7)			X												
31B. Fluoranthene (206-44-0)			X												
32B. Fluorene (86-73-7)			X												
33B, Hexachioro- benzene (118-74-1)			X									*			
34B. Hexachloro- butadiene (87-68-3)			X		-			-							
35B. Hexachloro- cyclopentadiene (77-47-4)			X								313				
36B Hexachloro- ethane (67-72-1)			X								************				
37B. Indeno (1,2,3-cd) Pyrene (193-39-5)			X												
38B. Isophorone (78-59-1)			X					11132							
39B. Naphthalene (91-20-3)			X												
40B, Nitrobenzene (98-95-3)			X												
41B. N-Nitro- sodimethylamine (62-75-9)			X												
42B. N-Nitrosodi- N-Propylamine (621-64-7)			X									, w			

CONTINUED FROM THE FRONT

CONTINUED FROM		2. MARK "X				3. E	FFLUENT				4. UN	ITS	5. INTA	KE (optiona	1)
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA		b. MAXIMUM 30 (if availal		c. LONG TERM VALUE (if ava	AVRG. ulable)				a. LONG TI AVERAGE V	ERM	
CAS NUMBER (if available)		BELIEVED PRESENT	ABSENT	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	- BASE/N	EUTRAL CO	MPOUND	S (continued)											
43B. N-Nitro- sodiphenylamine (86-30-6)	> .		X					0							
44B. Phenanthrene (85-01-8)			X				19.00								
458. Pyrene (129-00-0)			X					L L							
46B. 1,2,4-Tri- chlorobenzene (120-82-1)			X		2.22										, i
GC/MS FRACTION	- PESTIC	IDES										1811			*
1P. Aldrin (309-00-2)			X												
2P. α-BHC (319-84-6)			X					1			**		1,	MISS.	
3P. β-BHC (319-85-7)			X												
4P. γ-BHC (58-89-9)			X					(5)							
5P. δ-BHC (319-86-8)		E	X												
6P. Chlordane (57-74-9)			X								-				
7P. 4,4'-DDT (50-29-3)			X											•	
8P. 4,4'-DDE (72-55-9)			X										jë:		
9P. 4,4'-DDD (72-54-8)			X						- 3154						
10P. Dieldrin (60-57-1)			X												
11P. α-Enosulfan (115-29-7)			X												
12P. β-Endosulfan (115-29-7)			X												
13P. Endosulfan Sulfate (1031-07-8)			X												
14P. Endrin (72-20-8)			X			7. 70.00									
15P. Endrin Aldehyde (7421-93-4)			X						t						
16P. Heptachlor (76-44-8)			X				-	-					4		

	EPA I.D. NUMBER (copy from Item 1 of Form 1)	OUTFALL NUMBER
AGE V-8	IL0005126	-C01

1. POLLUTANT AND CAS NUMBER (if available)	2. MARK "X"			3. EFFLUENT					4. UNITS		5. INTAKE (optional)				
	a. TESTING BEI REQUIRED PR	b,		a. MAXIMUM DAILY VALUE				c. LONG TERM AVRG. VALUE (if available)		1 110 05			a. LONG TERM AVERAGE VALUE		
		BELIEVED PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	- PESTICI	DES (contin	ued)												
17P. Heptachlor Epoxide (1024-57-3)			X												
18P. PCB-1242 (53469-21-9)			X												
19P. PCB-1254 (11097-69-1)			X												
20P. PCB-1221 (11104-28-2)			X												
21P. PCB-1232 (11141-16-5)			X				140	=							
22P. PCB-1248 (12672-29-6)			X												
23P. PCB-1260 (11096-82-5)			X												
24P. PCB-1016 (12674-11-2)			X				7.7.2.2.2								
25P. Toxaphene (8001-35-2)			X					sur-port = EVU thou-sure							

EPA Form 3510-2C (8-90)

PAGE V-9

Please print o	r type in the unsha	ded areas only.	EPA ID Number (copy from IL0005126	Item 1 of Form 1)		ved, OMB No. 20-4 pires 5-31-92.	0-0086.			
FORM 2E NPDES	≎EPA	Facilities	Which Do No	t Discha	arge Process	s Wastev	vater			
I. RECEIVING	WATERS									
	For	this outfall, list	the latitude and longi	tude, and na	me of the receiving	water(s).				
Outfall Number (lis		itude Longitude Receiving Water (name)								
Number (#		eg Min Sec Deg Min Sec internal outfall discharges to		to outfal	1 -001					
A01	41.004	1.00 39.00 87.	0(57.0(7.00							
II. DISCHARG	SE DATE (If a ne	w discharger, the o	late you expect to begin di	scharging)	H					
III.TYPE OF V	VASTE									
		g the general type(s) of wastes discharged.				10			
☑ Sanitary	\A/astas	Restaurant or Ca	ofotoria Waston	□ Nonconta	ct Cooling Water	Other Nonpr	ocess			
			m here. Briefly describe th		<u>_</u>	Wastewater				
A. Existin authorit B. New Di authorit	y (see instruction schargers — Pr y. Instead of the	rovide measuremer ns). rovide estimates for number of measur	r the parameters listed in the parameters listed in the ments taken, provide the	ne left-hand colu source of estim	umn below, unless waive	ed by the permitting tions).				
	utant or ameter		aily Value clude units)		e (last year) lude units)	Number of Measurements Taken	Source of Estimat			
		Mass	Concentration	Mass	Concentration	(last year)	2 William discharger			
Biochemical Oxy Demand (BOD)	ygen	N/A	10 mg/L	N/A	6.58 mg/L	12.00				
Fotal Suspende	d Solids (TSS)	N/A	18 mg/L	N/A	5.42 mg/L	12.00				
	if believed present ste is discharged)	N/A	6K cfu/100ml	N/A	725	12.00				
Total Residual C		N/A	> 4.0 mg/L	N/A	> 4.0 mg/L	1.00				
Oil and Grease		N/A	5 mg/L	N/A	5 mg/L	1.00				
Chemical oxyge	en demand (COD)	N/A	n/a	N/A	N/A	0.00				
*Total organic ca	arbon (TOC)	N/A	n/a	N/A	N/A	0.00				
Ammonia (as N))	N/A	< 0.1 mg/L	N/A	< 0.1 mg/L	1.00				
Discharge Flow		Value 2,	160 GPD	1,0	060 GPD	12.00				
pH (give range)		Value	8.33		8.33	1.00				
Temperature (W	(inter)		°C		°C		N/A			
Temperature (S	ummer)						N/A			

*If noncontact cooling water is discharged

V. Except for leaks or spills, will the discharge described in this form be intermittent or seasonal?	D
If yes, briefly describe the frequency of flow and duration.	☐ Yes ☐ No
	<i>b.</i>
	19
VI. TREATMENT SYSTEM (Describe briefly any treatment system(s) used or to be used)	
Discharge is outfall of septic system where influent is aerated, solids effluent is chlorinated prior to discharge. Septic unit is maintained of minimum, by a licensed contractor.	are allowed to settle and n a quarterly basis, at a
	*
VII. OTHER INFORMATION (Optional)	
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewe	er any other information you feel
should be considered in establishing permit limitations. Attach additional sheets, if necessary.	
n/a	
y.	
₹ -	
A. Company of the Com	4
VIII. CERTIFICATION	
I certify under penalty of law that this document and all attachments were prepared under my directic system designed to assure that qualified personnel properly gather and evaluate the information submittee persons who manage the system, or those persons directly responsible for gathering the information, the my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties to the possibility of fine and imprisonment for knowing violations.	d. Based on my inquiry of the person or endormation submitted is to the best of
A. Name & Official Title	B. Phone No. (area code
Michael J. Martino, Facility Manger	& no.) (630) 357-3954
C. Signature	D. Date Signed
1. M Po PINE	1 tw - 6
1-12-41 711 000	10-1-10

Please print or type in th	ne unshade	d areas only.		A ID Number (cop 0005126	y from Item 1 of Form 1)		ved. OMB No. 2040 pires 5-31-92.	-0086.
FORM 2E NPDES	PA F	acilitie	es Wi	nich Do	Not Discha	arge Proces	s Wastev	vater
I. RECEIVING WATER	RS							
	For th	is outfall,	list the la	atitude and l	longitude, and nar	me of the receiving	water(s).	
Outfall	Latit	ude	Lon	gitude F	Receiving Water (name	9)	- пилен	ATTAINED TO A CONTRACTOR OF THE STREET
	Deg Min Sec Deg Min Sec Illinois & Michigan Canal							
B01 41	1.00 41.	.0(27.00	87.00 57	7.00 7.00				
II. DISCHARGE DATE	(If a new	discharger,	the date y	ou expect to be	gin discharging)			
III.TYPE OF WASTE	.70 E							A
A. Check the box(es) in	ndicating t	he general t	type(s) of v	wastes discharç	ged.			
✓ Sanitary Wastes		Restaurant	or Cafeter	ia Wastes	☐ Noncontac	et Cooling Water	Other Nonpro	
B. If any cooling water	additives	are used, lis	t them her	e. Briefly descr	ribe their composition i	f this information is ava	ilable.	
authority (see in: B. New Discharge authority. Instead	structions, rs — Prov). <i>r</i> ide estimate	es for the p	parameters liste ts taken, provid	ed in the left-hand colu de the source of estima	d column below, unless man below, unless waive ated values (see instruction) (2) age Daily	ed by the permittin	
Pollutant or Parameter			Daily Va (include u			Value (last year) (include units)		Source of Estimate
		Mass		Concentration	Mass	Concentration	Taken (last year)	(if new discharger)
Biochemical Oxygen Demand (BOD)		N/A		14 mg/L	N/A	7.08 mg/L	12.00	
Total Suspended Solids (T	SS)	N/A	2411-1	16 mg/L	N/A	8.92 mg/L	12.00	
Fecal Coliform (if believed or if sanitary waste is discl		N/A	. 8				165	
Total Residual Chlorine (if	THE RESERVE AND THE			300 cf/100r	nl N/A	83.33	12.00	
chlorine is used)		N/A		1.42 mg/L		83.33 1.42 mg/L	12.00	
		N/A N/A				+		
chlorine is used) Oil and Grease *Chemical oxygen demand			`	1.42 mg/L	N/A	1.42 mg/L	1.00	
Oil and Grease	d (COD)	N/A		1.42 mg/L 4 mg/L	N/A N/A	1.42 mg/L 4 mg/L	1.00	
Oil and Grease *Chemical oxygen demand	d (COD)	N/A		1.42 mg/L 4 mg/L N/A	N/A N/A N/A	1.42 mg/L 4 mg/L N/A	1.00	
Oil and Grease *Chemical oxygen demand *Total organic carbon (TO	d (COD)	N/A N/A		1.42 mg/L 4 mg/L N/A N/A < 0.21 mg/	N/A N/A N/A N/A	1.42 mg/L 4 mg/L N/A	1.00 1.00 0.00	
Oil and Grease *Chemical oxygen demand *Total organic carbon (TO	d (COD)	N/A N/A N/A		1.42 mg/L 4 mg/L N/A N/A < 0.21 mg/	N/A N/A N/A N/A 1,0	1.42 mg/L 4 mg/L N/A N/A < 0.21 mg/L	1.00 1.00 0.00 0.00	
Oil and Grease *Chemical oxygen demand *Total organic carbon (TO: Ammonia (as N) Discharge Flow	d (COD)	N/A N/A N/A Value	1,350	1.42 mg/L 4 mg/L N/A N/A < 0.21 mg/	N/A N/A N/A N/A 1,0	1.42 mg/L 4 mg/L N/A N/A < 0.21 mg/L 60 GPD	1.00 1.00 0.00 0.00 1.00	N/A
Oil and Grease *Chemical oxygen demand *Total organic carbon (TO: Ammonia (as N) Discharge Flow pH (give range)	d (COD)	N/A N/A N/A Value	1,350	1.42 mg/L 4 mg/L N/A N/A < 0.21 mg/	N/A N/A N/A N/A 1,0	1.42 mg/L 4 mg/L N/A N/A < 0.21 mg/L 60 GPD	1.00 1.00 0.00 0.00 1.00	N/A N/A

V. Except for leaks or splils, will the discharge of If yes, briefly describe the frequency of flow and		ermittent or seasonal?	☐ Yes I	☑ No
n yes, briefly describe the frequency of flow and	durauon.			
VI. TREATMENT SYSTEM (Describe briefly any tre	eatment system(s) used or to b	e used)		
Discharge is outfall of septic syst effluent is chlorinated prior to di minimum, by a licensed contractor.	em where influent is ischarge. Septic unit	s aerated, solids s is maintained on	are allow n a quarte	ed to settle and rly basis, at a
		:6:		
VII. OTHER INFORMATION (Optional)				
Use the space below to expand upon any of the all should be considered in establishing permit limitate	bove questions or to bring to the lions. Attach additional sheets,	e attention of the reviewe if necessary.	r any other info	rmation you feel
n/a			W2151111 1 - 11 11	stengevinto cellulo recticate
, a			F	
8				
VIII. CERTIFICATION				
I certify under penalty of law that this document system designed to assure that qualified personne persons who manage the system, or those perso my knowledge and belief, true, accurate, and con the possibility of fine and imprisonment for knowin	el properly gather and evaluate ins directly responsible for gath inplete. I am aware that there a	the information submitted pering the information, the	d. Based on my information si	inquiry of the person or induited is to the best of
A. Name & Official Title				B. Phone No. (area code
Michael J. Martino, Facility Manger	c			& no.) (630) 357-3954
C. Signature				D. Date Signed

EPA Form 3510-2E (8-90)

EPA ID Number (copy from Item 1 of Form 1) IL0005126

Form Approved. OMB No. 2040-0086 Approval expires 5-31-92

Please print or type in the unshaded areas only

FORM

NPDES

U.S. Environmental Protection Agency Washington, DC 20460

Application for Permit to Discharge Storm Water Discharges Associated with Industrial A

Paperwork Reduction Act Notice

Public reporting burden for this application is estimated to average 28.6 hours per application, including time for reviewing instructions searching existing data sources gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden less make any other aspect of this collection of information, or suggestions for improving this form, including suggestions which may increase or reduce this burden to: Chief, Information Policy Public reporting burden for this application is estimated to average 28.6 hours per application, including time for reviewing instruction Branch, PM-223, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Director, Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503.

Outfall Location For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water. D. Receiving Water A. Outfall Number (name) (list) B. Latitude C. Longitude 002 41.00 45.00 30.00 Illinois and Michigan Canal 41.00 87.00 57.00

Improvements

A. Are you now required by any Federal, State, or local authority to meet any implementation schedule for the construction, upgrading or operation of wastewater treatment equipment or practices or any other environmental programs which may affect the discharges described in this application? This includes, but is not limited to, permit conditions, administrative or enforcement orders, enforcement compliance schedule letters, stipulations, court orders, and grant or loan conditions.

Identification of Conditions, Agreements, Etc.		2. Affected Outfalls		Complia	4. Final Compliance Date		
	number	source of discharge	Brief Description of Pro	oject a. req.	b. proj.		
N/A	N/A	N/A	N/A				
					1		
			+				

B: You may attach additional sheets describing any additional water pollution (or other environmental projects which may affect your discharges) you now have under way or which you plan. Indicate whether each program is now under way or planned, and indicate your actual or planned schedules for construction.

III. Site Drainage Map

Attach a site map showing topography (or indicating the outline of drainage areas served by the outfalls(s) covered in the application if a topographic map is unavailable) depicting the facility including: each of its intake and discharge structures; the drainage area of each storm water outfall; paved areas and buildings within the drainage area of each storm water outfall, each known past or present areas used for outdoor storage of disposal of significant materials, each existing structural control measure to reduce pollutants in storm water runoff, materials loading and access areas, areas where pesticides, herbicides, soil conditioners and fertilizers are applied; each of its hazardous waste treatment, storage or disposal units (including each area not required to have a RCRA permit which is used for accumulating hazardous waste under 40 CFR 262.34); each well where fluids from the facility are injected underground; springs, and other surface water bodies which received storm water discharges from the facility.

Continued from the Front

IV. Narrative Description of Pollutant Sources

	ch outfall, provide an estimate of the area (in d by the outfall.	clude units) of imperious surface	s (including p	aved areas and building roofs) drained to the outfall, and a	en estimate of the total surface area
Outfall Number	Area of Impervious Surface (provide units)	Total Area Drained (provide units)	Outfall Number	Area of Impervious Surface (provide units)	Total Area Drained (provide units)
002	170,223 sq. ft.	383,566 sq, ft.			(promodumo)
to stor	m water; method of treatment, storage water runoff; materials loading and acc	e, or disposal; past and pres	sent materia	three years have been treated, stored or disposed ls management practices employed to minimize on and frequency in which pesticides, herbicides, soil	contact by these materials with
hydrocarb truck. I procedure Operating water col must be p accomplis	ons, solvents, petroleum pro MTT also have a small blendi is are in place for supervisi g personnel physically observ lected within diked storage obysically drained by manuall	ducts, and inorganic ng and packaging faci ng the drainage of st e secondary containme area of operating tan y opening a locked va	acids/bas lity for orm water ont for oi ks. Storm	in the receipt, storage and distributes. Bulk liquid chemicals are received automotive antifreeze, and aircraft/ruffrom secondary containment areas into the secondary containment areas into the secondary containment areas in the secondary containment areas in the secondary containment areas in the secondary containment and the secondary containment and the secondary containment and the secondary containment are carried out under the jurisciction of the secondary containment are carried out under the secondary containment are carried out under the secondary containment are carried out under the secondary containment are carried out under the secondary containment are carried out under the secondary containment are carried out under the secondary containment areas in the second	ed by barge, rail, inway deicer. Set o an open watercourse. scharging the storm c flow and the ditches ge of drainage water is
descr		receives, including the sche		onstructural control measures to reduce pollutant pe of maintenance for control and treatment meas	
Outfall Number	1	T	reatment		List Codes from Table 2F-1
002	None		catment		4-A
A. I certif				n tested or evaluated for the presence of nonstorm	
		Signature	accompany	ring Form 2C or From 2E application for the outfall	Date Signed
	. Martino, Facility Manager	Stuhel 9	two M	\sim	10.2-18
		4 11	-		
B. Provid	le a description of the method used, the	e date of any testing, and th	e onsite dra	nage points that were directly observed during a te	est.
samples f		ollected at each outf	all on 8/	fall on June 1, 2017, December 4, 201 29/2018. All samples were submitted 2.	
					291
Provide	ficant Leaks or Spills existing information regarding the his late date and location of the spill or lea			cic or hazardous pollutants at the facility in the released.	last three years, including the
IMTT Illi last thre		experienced any sign	ificant 1	eaks or spills of toxic or hazardous	pollutants within the
	70020.				
					2
	25 (1 02)		one 2 of 3		Continue on Page 3

Continued from Page 2	EPA ID Number (copy from It IL0005126	tem 1 of Form 1)		
VII. Discharge Information				
	ceeding. Complete one set of tables for each out e included on separate sheets numbers VII-1 and		all number in the s	pace provided.
Potential discharges not covered by a currently use or manufacture as an inter-	analysis – is any toxic pollutant listed in table 2 ermediate or final product or byproduct?	F-2, 2F-3, or 2F-4, a	substance or a co	omponent of a substance which you
Yes (list all such pollutants b	pelow)	No (go	to Section IX)	
F*				
*				
~				
VIII. Biological Toxicity Testing D	Andrew Control			
Do you have any knowledge or reason to be relation to your discharge within the last 3 to 10 to	believe that any biological test for acute or chron years?	ic toxicity has been ma	ade on any of you	discharges or on a receiving water in
Yes (list all such pollutants be	elow)	✓ No (go	to Section IX)	
41				
IX. Contract Analysis Information				
	VII performed by a contract laboratory or consult	ting firm?		
	and telephone number of, and pollutants		to Section X)	
analyzed by, each such	laboratory or firm below)			D D W 4 4 4 4 4 4
A. Name	B. Address	C. Area Coo	de & Phone No.	D. Pollutants Analyzed
First Environmental Laboratory	1600 Shore Road Naperville, IL 60563	(630) 778-1	1200	
	Napelville, 12 00303			
				10 m
_				
V Contification				
X. Certification			~	
that qualified personnel properly gather an directly responsible for gathering the infor	ument and all attachments were prepared under devaluate the information submitted. Based on mation, the information submitted is, to the bes g false information, including the possibility of fin	my inquiry of the person at of my knowledge an	on or persons who nd belief, true, acc	manage the system or those persons curate, and complete. I am aware that
A. Name & Official Title (Type Or Print)		B. Area Code and	d Phone No.	
Michael J. Martino, Termin	nal Manager	(630) 257-	3954	
C. Signature		D. Date Signed		33.33
Asferla (1949)	atu	10.	J-18	
EPA Form 3510-2F (1-92)	Page 3 of 3			

EPA ID Number (copy from Item 1 of Form 1) IL0005126 Form Approved. OMB No. 2040-0086 Approval expires 5-31-92

VII. Discharge information (Continued from page 3 of Form 2F)

Part A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

		mum Values elude units)		Average Values (include units)		
Pollutant and CAS Number (if available)	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants
Oil and Grease	5.0	N/A	5.0	N/A	0.00	Storm Water Runoff
Biological Oxygen Demand (BOD5)	< 5	N/A	< 5.0	N/A	0.00	Storm Water Runoff
Chemical Oxygen Demand (COD)	36.0	N/A	36.0	N/A	0.00	Storm Water Runoff
Total Suspended Solids (TSS)	9.0	N/A	9.0	N/A	0.00	Storm Water Runoff
Total Nitrogen	1.25	N/A	1.25	N/A	0.00	Storm Water Runoff
Total Phosphorus	0.17	N/A	0.17	N/A	0.00	Storm Water Runoff
pH	Minimum	Maximum	Minimum	Maximum		Storm Water Runoff

Part B - List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements.

	(inc	mum Values clude units)	Ave (ir	erage Values aclude units)	Number	
Pollutant and CAS Number (if available)	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants
N/A	N/A	N/A	N/A	N/A		
				11/39		
	-	 				
		in the second second	 		 	
	-		+		-	
			.531			
	1 207					
				T	1	10.001
			1			
- 722-	1		-		1	160-1-
	 	-				
	-		-		h	
		ļ		W-5,		
			1_,			
			1			
				1		
			4			W - W - W

	-	***				
	1	1		199000	1	
	 		+			

Part C - Lis	uirements. Comple	own in Table 2F-2, 2F- ete one table for each o	utfall.	ou know or have reason toerage Values	believ	ve is preser	t. See the instruct	tions for additional details an
Pollutant and	(include units) Grab Sample Taken During		Grab Sample Taken During	clude units)] ,	lumber of Storm		
CAS Number (if available)	First 20 Minutes	Flow-Weighted Composite	First 20 Minutes	Flow-Weighted Composite		Events ampled	Sou	urces of Pollutants
N/A	N/A	N/A	N/A	N/A			AMINE .	
					_			
					-			
		ļ	ļ		├ ─			
		3 2	1		\vdash			
			 		 			
				- WAC-MAL	1			
							100	
					_			
	1400				ऻ			
	- 22				-			
		-		53/47	-			<u> </u>
					\vdash			
-		-	+		+			
		 	 		†			
W. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.								==
		À.						
	No. of the least o			WCC-155111				
					_		1	
					_			
	71870		-	n	\vdash			
					-			
			-		+			
Part D - Pr	ovide data for the s	torm event(s) which res	sulted in the maxim	um values for the flow we	ighted	composite	sample.	
1. Date of Storm	2. Duration of Storm Event	3. Total ra during stor	infall	Number of hours betw beginning of storm meas and end of previous	sured	ra	flow rate during in event	6. Total flow from rain event

Event	(in minutes)	(in inches)	measurable rain event	specify units)	(gallons or specify units)
N/A	N/A	N/A	N/A	N/A	N/A
_					
-			-		
		¥			
7. Provide a	description of the me	ethod of flow measurement or estimate.			
N/A					
					2
					*

Please print or type in the unshaded areas only

EPA ID Number (copy from Item 1 of Form 1) IL0005126

Form Approved. OMB No. 2040-0086

Approval expires 5-31-92

FORM NPDES

U.S. Environmental Protection Agency Washington, DC 20460

Application for Permit to Discharge Discharges Associated with Indu

Paperwork Reduction Act Notice

OCT **0 3** 2018

Public reporting burden for this application is estimated to average 28.6 hours per application, including time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate, any other aspect of this collection of information, or suggestions for improving this form, including suggestions which may increase or reduce this burden to: Branch, PM-223, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (下午) (中央 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (The 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (The 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (The 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (The 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (The 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (The 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (The 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (The 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (The 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (The 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Directs (The 1200 Pennsylvania A

	100	
1	A.45-11	Location
ı.	Outiai	Location

For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water.

A. Outfall Number (list)		B. Latitude		C.	Longitude		D. Receiving Water (<i>name</i>)
003 Stormwater	41.00	41.00	45.00	87.00	56.00	37.61	Cal-Sag Canal
							77

II. Improvements

A. Are you now required by any Federal, State, or local authority to meet any implementation schedule for the construction, upgrading or operation of wastewater treatment equipment or practices or any other environmental programs which may affect the discharges described in this application? This includes, but is not limited to, permit conditions, administrative or enforcement orders, enforcement compliance schedule letters, stipulations, court orders, and grant or loan conditions.

Identification of Conditions,		2. Affected Outfalls		4. I Complia	inal nce Date
Agreements, Etc.	number	source of discharge	Brief Description of Project	a. req.	b. proj.
N/A	N/A	N/A	N/A		

	+				
	-			_	

B: You may attach additional sheets describing any additional water pollution (or other environmental projects which may affect your discharges) you now have under way or which you plan. Indicate whether each program is now under way or planned, and indicate your actual or planned schedules for construction.

III. Site Drainage Map

Attach a site map showing topography (or indicating the outline of drainage areas served by the outfalls(s) covered in the application if a topographic map is unavailable) depicting the facility including; each of its intake and discharge structures; the drainage area of each storm water outfall; paved areas and buildings within the drainage area of each storm water outfall, each known past or present areas used for outdoor storage of disposal of significant materials, each existing structural control measure to reduce pollutants in storm water runoff, materials loading and access areas, areas where pesticides, herbicides, soil conditioners and fertilizers are applied; each of its hazardous waste treatment, storage or disposal units (including each area not required to have a RCRA permit which is used for accumulating hazardous waste under 40 CFR 262.34); each well where fluids from the facility are injected underground; springs, and other surface water bodies which received storm water discharges from the facility.

Continued from the Front

IV. Narrative Description of Pollutant Sources

Outfall	Area of Impervious Surface	Total Area Drained	Outfall	Area of Impervious Surface	Total Area Drained
Number	(provide units)	(provide units)	Number	(provide units)	(provide units)
03	136,393 sq. ft.	233,456 sq, ft.			
		-			
	mara la				
to store	m water; method of treatment, storage, water runoff; materials loading and acce	or disposal; past and pre	sent materials m	e years have been treated, stored or dispos anagement practices employed to minimiz equency in which pesticides, herbicides, so	e contact by these materials wit
drocarb cuck. I cocedure perating ater col ast be p ccomplis	cons, solvents, petroleum produm MTT also have a small blending as are in place for supervising g personnel physically observe lected within diked storage as physically drained by manually	ucts, and inorganic g and packaging fact g the drainage of st secondary containme rea of operating tar opening a locked va	acids/bases. llity for aut corm water fr ent for oil s nks. Stormwat alve for the	the receipt, storage and distri Bulk liquid chemicals are rece omotive antifreeze, and aircraft/ om secondary containment areas i heen and contamination prior to er drainage is by natural hydrau designated outfall. Final disch r carried out under the juriscic	ived by barge, rail, runway deicer. Set no an open watercourse discharging the storm lic flow and the ditche arge of drainage water:
descri		eceives, including the sch		ructural control measures to reduce polluta f maintenance for control and treatment me	
Outfall Number		т	reatment		List Codes from Table 2F-1
03	None	****	reaument		4-A
	ormwater Discharges				
				sted or evaluated for the presence of nonstr Form 2C or From 2E application for the out	
Name and	Official Title (type or print)	gnature			Date Signed
ichael J	. Martino, Facility Manager	Tahal 100	Touts		10-2-18
	1,	1	(
				e points that were directly observed during a 1 on June 1, 2017, December 4, 2	
	or other constituents were col ntal Laboratories, Inc. IL EL			2018. All samples were submitte	d to and analyzed by Fir

	ficant Leaks or Spills				
	existing information regarding the histo nate date and location of the spill or leak,			or hazardous pollutants at the facility in th used.	e last three years, including th
TT Illi	nois Lemont facility did not e	experience any signi	ficant leaks	or spills within the last three	years.
	#()				

,				
	EPA ID Number (copy from Ite	om 1 of Form 1)	7	
Continued from Page 2	1L0005126	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
II. Discharge Information		to the state of		x Shietar No. 1880 (King I
· · · · · · · · · · · · · · · · · · ·	oceeding. Complete one set of tables for each outfi re included on separate sheets numbers VII-1 and		all number in the s	pace provided.
	analysis – is any toxic pollutant listed in table 2F ermediate or final product or byproduct?	F-2, 2F-3, or 2F-4, a	substance or a c	component of a substance which ye
Yes (list all such pollutants l	below)	No (g	o to Section IX)	
ē				
III. Biological Toxicity Testing I	Data Data		diam'er	ALTERNATION
Do you have any knowledge or reason to	believe that any biological test for acute or chronic	toxicity has been m	ade on any of you	r discharges or on a receiving water
relation to your discharge within the last 3 Yes (list all such pollutants b	•	√ No (a	to Section IX)	
		(3)		
Contract Analysis Informatio	The state of the state of the state of	I USANIEWS	Was Visit Park	
	VII performed by a contract laboratory or consulting	na firm?	- ELEMATRIANIA	REMITTED TO THE PARTY.
vicio arry or the arranyses reported in item	vii periorined by a contract laboratory or consulti	ng min.		
	and telephone number of, and pollutants	No (g	o to Section X)	
	and telephone number of, and pollutants laboratory or firm below) B. Address		o to Section X) de & Phone No.	D. Pollutants Analyzed
analyzed by, each such A. Name	laboratory or firm below)		de & Phone No.	
analyzed by, each such A. Name	B. Address 1600 Shore Road	C. Area Co	de & Phone No.	
analyzed by, each such A. Name	B. Address 1600 Shore Road Naperville, IL 60563	C. Area Co	de & Phone No.	
analyzed by, each such A. Name	B. Address 1600 Shore Road Naperville, IL 60563	C. Area Co	de & Phone No.	
analyzed by, each such A. Name	B. Address 1600 Shore Road Naperville, IL 60563	C. Area Co	de & Phone No.	D. Pollutants Analyzed See Appendices A, B, C, D
analyzed by, each such A. Name	B. Address 1600 Shore Road Naperville, IL 60563	C. Area Co	de & Phone No.	
analyzed by, each such	B. Address 1600 Shore Road Naperville, IL 60563	C. Area Co	de & Phone No.	
analyzed by, each such A. Name	B. Address 1600 Shore Road Naperville, IL 60563	C. Area Co	de & Phone No.	

there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A. Name & Official Title (Type Or Print)

8. Area Code and Phone No.

Michael J. Martino, Terminal Manager

(630) 257-3954

D. Date Signed

Page 3 of 3

EPA ID Number (copy from Item 1 of Form 1) IL0005126

Form Approved. OMB No. 2040-0086 Approval expires 5-31-92

VII. Discharge information (Continued from page 3 of Form 2F)

Part A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

		num Values lude units)		erage Values nclude units)	Number	
Pollutant and CAS Number (if available)	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants
Oil and Grease	5.0	N/A	5.0	N/A	0.00	Storm Water Runoff
Biological Oxygen Demand (BOD5)	9.0	N/A	< 5.0	N/A	0.00	Storm Water Runoff
Chemical Oxygen Demand (COD)	53.0	N/A	36.0	N/A	0.00	Storm Water Runoff
Total Suspended Solids (TSS)	19.0	N/A	9.0	N/A	0.00	Storm Water Runoff
Total Nitrogen	2.07	N/A	1.25	N/A	0.00	Storm Water Runoff
Total Phosphorus	0.17	N/A	0.17	N/A	0.00	Storm Water Runoff
pН	Minimum	Maximum	Minimum	Maximum		Storm Water Runoff

Part 8 – List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements.

irements.					
(inc	mum Values clude units)	Av. (ir	erage Values nclude units)	Number	
Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants
N/A	N/A	N/A	N/A		
		77		4	
			aratiko — Italian		
				1 1	
			1		
			ö. ————————————————————————————————————		

	*				
14			1		
		1			
1000		17			
	1				
	1.00				
1 "					
1			77.11		***
10000		_	7 W 1	1	
	Maxi (inc Grab Sample Taken During First 20 Minutes N/A	Maximum Values (include units) Grab Sample Taken During First 20 Minutes N/A N/A N/A Signature Flow-Weighted Composite	Maximum Values (include units) Grab Sample Taken During First 20 Minutes N/A N/A N/A MA MA MA MA MA MA MA MA MA	Maximum Values (include units) Grab Sample Taken During First 20 Minutes N/A N/A N/A MA MA MA MA MA MA MA MA MA	Maximum Values (include units) Grab Sample Taken During First 20 Minutes N/A N/A N/A N/A Minutes Average Values (include units) Number of Storm Events Sampled N/A N/A N/A N/A N/A N/A N/A N/

Cont	heuni	from	the	Front	

rec		te one table for each out um Values		erage Values				
		um values ide units)	(in	erage values clude units)	l N	lumber		
Pollutant and CAS Number (if available)	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	١	of Storm Events ampled	So	urces of Pollutants
N/A	N/A	N/A	N/A	N/A				
					-			
					-			
		<u> </u>	L		-			
					_			
					_			
			1					
		-	4,00		-			
				anson in the	-			
					_			
							() (
					-			2.1
							-	
					\vdash			
					-			
					-			
			_					
					_			
					_			
art D - Pro	ovide data for the st	orm event(e) which recu	Itad in the mavim	um values for the flow weigh	ahtad	composite (amole	
alt D - Til	ovide data for the st	onn evenus) which resu	inted in the maxim	4.	gined	Composite .	5.	
1.	2.	3.		Number of hours between	en	Maximum	flow rate during	6.
Date of Storm	Duration of Storm Event	Total rain during storm		beginning of storm meas and end of previous	ured	ra (gallor	in event ns/minute or	Total flow from
Event	(in minutes)	(in inche		measurable rain ever		spe	cify units)	rain event (gallons or specify units)
/A	N/A	N/A		N/A		N/A		N/A
		"						,
				3:				
7. Provide a	description of the m	ethod of flow measurem	nent or estimate					
/A	223011121111111111111111111111111111111	and of how moudaten	or obumate.					

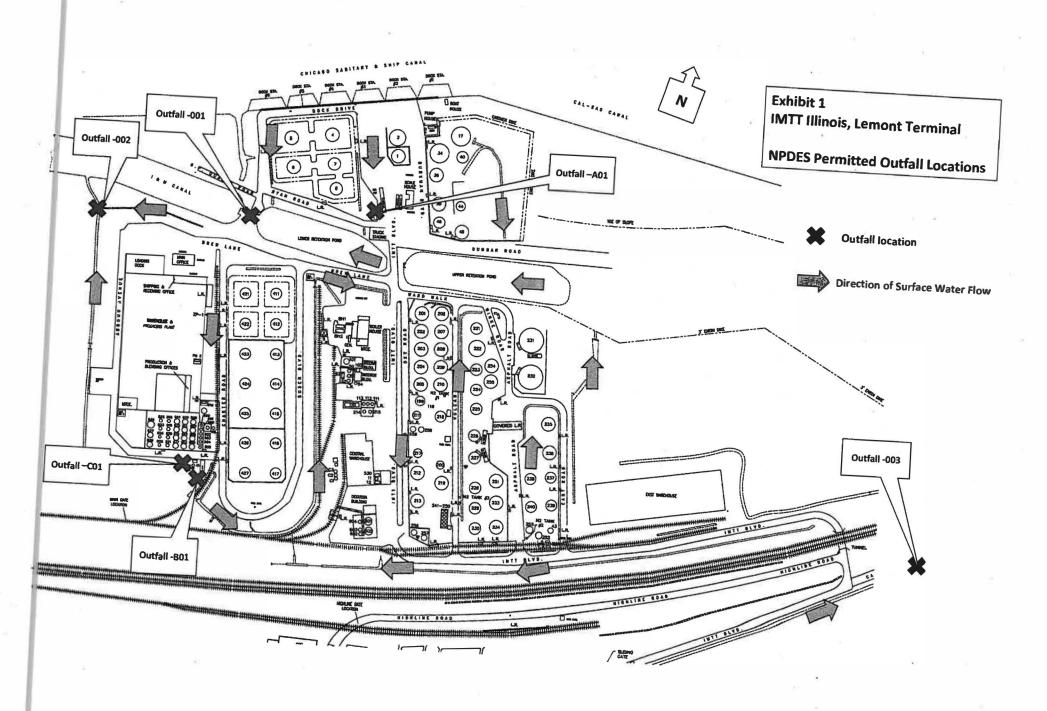
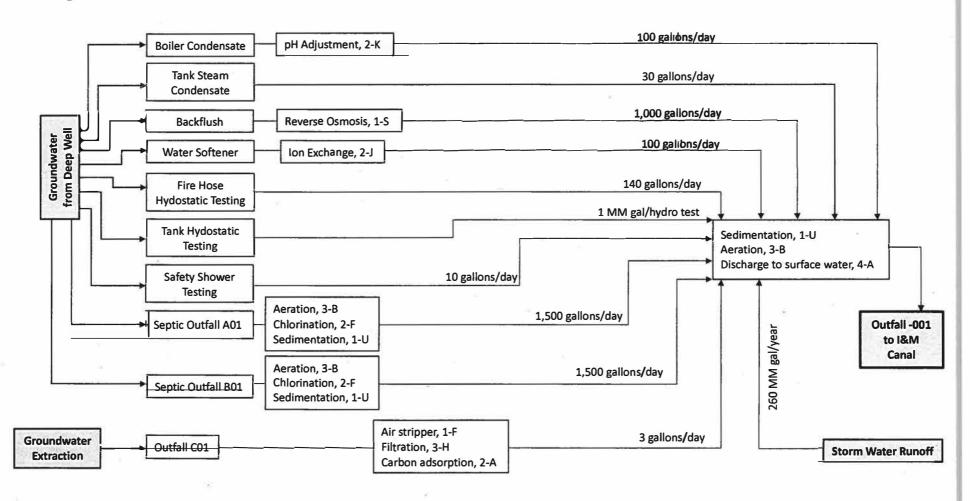
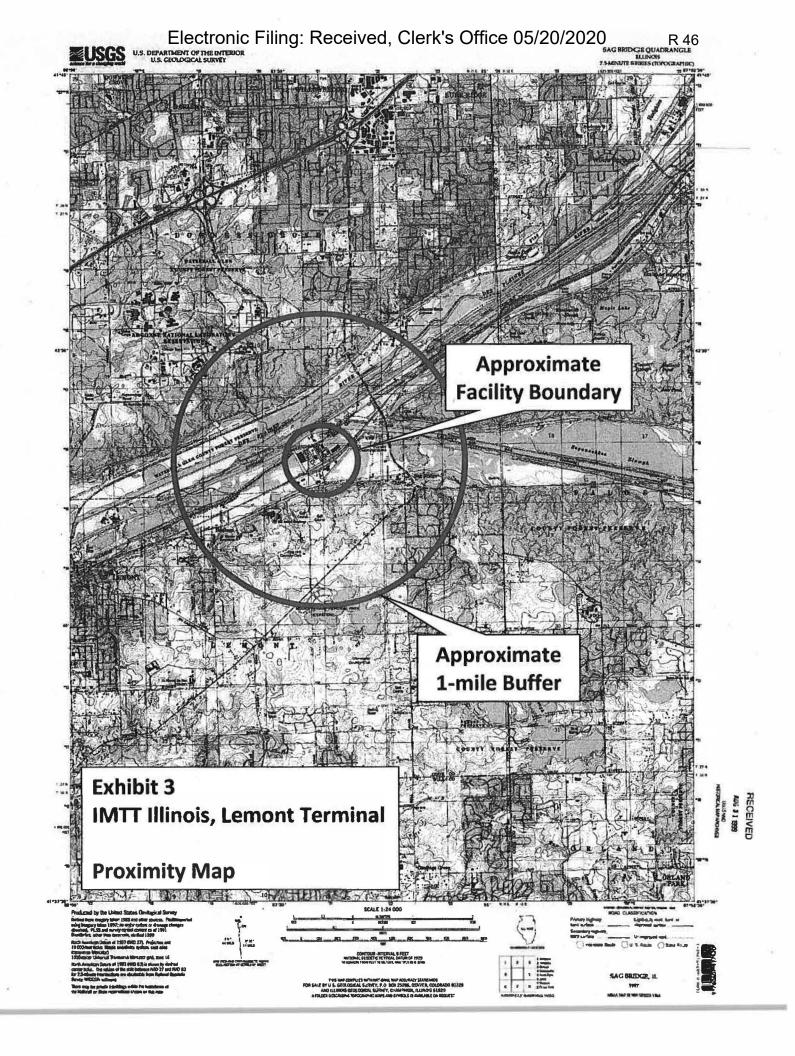




Exhibit 2

IMTT Illinois, Lemont Terminal
Flow Diagram for Outfall -001

Appendix A – IMTT Lemont terminal, Outfall -001 discharge monitoring results (October 2017 – September 2018)

O. 4fall 001	000	Ammonio	0 & G	Chlorina	Г.	T:	SS	Te	mp	р	Н	D	0		Flow		TOC	COD
Outfall -001	BOD	Ammonia	Uad	Chlorine	Fe	Max	Avg	Max	Min	Max	Min	Min	Avg	Max	Avg	TOTAL	TOC	COL
September-18	5.00	0.00	4.00	0.02	0.24	13.00	13.00	75.40	64.40	8.20	7.29	6.80	6.98	2.19	0.81	24.37		
August-18	6.00	0.00	0.00	0.02	0.32	28.00	28.00	75.90	74.30	8.40	7.88	6.70	6.90	2.59	0.97	29.10	3.1	23
July-18	5.00	0.00	5.00	0.01	0.51	44.00	35.00	79.90	71.10	8.38	7.63	6.80	6.98	2.68	0.80	23.89		
June-18	0.00	0.27	0.00	0.01	0.44	16.00	16.00	80.40	68.40	8.05	7.57	6.70	6.93	2.34	0.95	28.51		
May-18	7.00	0.00	0.00	0.02	0.47	38.00	29.00	75.90	62.80	8.11	7.91	6.80	6.95	3.41	0.99	29.59		
April-18	0.00	0.27	0.00	0.02	0.35	22.00	22.00	55.60	43.50	8.23	8.02	6.90	7.05	2.12	0.46	13.74		
March-18	9.00	0.32	0.00	0.02	0.44	0.00	0.00	51.80	44.20	8.35	8.11	7.00	7.33	2.26	0.70	21.57		
February-18	0.00	0.71	0.00	0.02	0.29	13.00	13.00	51.80	46.20	8.34	8.06	7.20	7.40	2.37	1.00	27.91		
January-18	0.00	0.25	0.00	0.02	0.17	0.00	0.00	54.00	37.90	8.43	8.21	7.20	7.46	1.21	0.51	15.88		
December-17	5.00	0.32	0.00	0.02	0.25	9.00	9.00	56.60	37.40	8.79	8.10	7.20	7.45	2.25	0.45	13.93	2 - 21	
November-17	0.00	0.44	0.00	0.02	0.84	6.00	6.00	53.40	48.00	8.35	7.90	7.60	7.75	2.03	0.42	12.59		
October-17	5.00	0.27	0.00	0.02	0.41	38.00	24.80	68.20	54.30	8.61	7.62	6.80	7.58	2.03	0.43	13.25		
318																254.31		
Maximum	9.00	0.71	5.00	0.02	0.84	44.00		80.40		8.79				3.41				
Minimum									37.40		7.29	6.70						
Average	3.50	0.24	0.75	0.02	0.39		16.32						7.23		0.71			

Appendix B – IMTT Lemont terminal, Outfall -A01 discharge monitoring results (October 2017 – September 2018)

Outfall -A01	BOD	TSS	Fecal	Flow	COD	TOC	Ammonia	O&G	рΗ
September-18	0.00	8.00	0.00	0.00106					
August-18	6.00	0.00	0.00	0.00196	28.00	9.10	< 0.1	5.00	8.33
July-18	8.00	0.00	0.00	0.00216					180
June-18	5.00	5.00	0.00	0.00039					
May-18	6.00	9.00	0.00	0.00098					1
April-18	10.00	18.00	0.00	0.00103					
March-18	8.00	12.00	0.00	0.00154					
February-18	8.00	6.00	2,700.00	0.00154					
January-18	7.00	0.00	0.00	0.00077					
December-17	6.00	0.00	0.00	0.00088				****	
November-17	8.00	0.00	0.00	0.00022					
October-17	7.00	7.00	6,000.00	0.00023					
Maximum	10.00	18.00	6,000.00	0.00216	0.00		160,00		
Average	6.58	5.42	725.00	0.00106	i i				

Appendix C – IMTT Lemont terminal, Outfall -B01 discharge monitoring results (October 2017 – September 2018)

Outfall -B01	BOD	TSS	Fecal	Flow	COD	TOC	Ammonia	O&G	рН
September-18	0.00	8.00	0.00	0.00110					
August-18	10.00	0.00	50.00	0.00068	< 10	0.90	0.21	4.00	7.78
July-18	0.00	9.00	0.00	0.00033					
June-18	9.00	5.00	0.00	0.00054					
May-18	0.00	8.00	0.00	0.00035					
April-18	14.00	8.00	0.00	0.00135	-				
March-18	13.00	16.00	50.00	0.00037					
February-18	0.00	12.00	0.00	0.00028					
January-18	0.00	8.00	100.00	0.00032		Tale			
December-17	14.00	15.00	0.00	0.00109					
November-17	14.00	12.00	0.00	0.00030					
October-17	11.00	6.00	800.00	0.00103					
Maximum	14.00	16.00	800.00	0.00135					
Average	7.08	8.92	83.33	0.00064					

Appendix D – IMTT Lemont terminal, Outfall -C01 discharge monitoring results (October 2017 – September 2018)

Outfall CO1	POD	TSS	0&G	Ammonia	Flo	ow	mll	COD	тос	luan
Outfall -C01	BOD	122	U&G	Ammonia	Max	Avg	рН	COD	100	Iron
September-18					0.000033	0.0000002			0.80	
August-18	5.00	< 5	3.00	0.24	0.000038	0.0000002	8.08	< 10		0.08
July-18					0.000025	0.0000003				
June-18					0.000024	0.0000002			20.00	
May-18					0.000000	0.0000107				
April-18					0.000084	0.0000004				
March-18					0.000031	0.0000003			310.00	
February-18					0.000037	0.0000003				
January-18			,		0.000038	0.0000001				
December-17					0.000025	0.0000016			5.00	
November-17					0.000041	0.0000069				
October-17					0.000038	0.0000091				
Maximum					0.000084				310.00	
Average						0.0000025			83.95	

Appendix E – IMTT Lemont terminal, Outfalls -002 & -003 discharge monitoring results (August 2018)

Outfall -002	BOD	TSS	0 & G	рН	Temp
August-18	< 5	9.00	5.00	7.81	70.00
Outfall -003	BOD	TSS	O&G	рН	Temp
August-18	9.00	19.00	5.00	7.73	71.40

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 • (217) 782-3397

BRUCE RAUNER, GOVERNOR

ALEC MESSINA, DIRECTOR

Memorandum

Date:	Wednes	day, October 1	0, 2018			
То:	Scott Tv	vait, DWPC St	andards		* *	
From:	Shu-Me	i Tsai		4	t	
Subject:	Request	for Water Qua	ality Standards Ev	aluation		
	•	be drafted for t cilitate permit		ied below. The fol	lowing standar	ds related items
	Antidegrad	ation Assessm	nent □ ne Iditional Paramete	ew discharge Decers of Concern:	xpanded 🗆 re	located
I	Reasonable	Potential/Wa	ter Quality Base	d Effluent Limits	Analysis	
·	Whole Efflu	ent Biomonit	oring Recommen	dations		
☑	Ammonia 1	Limits	Current Limits Spring/Fall Summer Winter	Ave.	Max	4
	☐ Facil	ity now collect	ts ammonia 5 day	s per week		
☑ :	303(d)/BSC	Listing or Ra	ting for Receivin	g Water		
Facility Na	me: IMTT -	- Illinois				
NPDES No	. IL0005126	, 1	Receiving Water	s: Illinois and Mic	higan Canal	
County: Co ☐ Major F		[†] ☑ Minor Fac		i ration Date: 2/2 8 Outfall 0		MGD
			Highes	t monthly ave. flo	w:	MGD
			n/Map forwarded Report included w	to IDNR on with received applic	cation (copy at	tached)
	check Disso		Ammonia (as N), Organic Compo	Temperature, Chro	omium (Total),	, Phenols,
Shu-Mei						

PDES IÙ	Mon. Period End Date	u <u>ttaleee</u> tron	MLC - Season	ræœ⊌ved, Cler	K'SMONTICE (0 5/12 0 /12 10 2 0 oncentration 3	nRc5n3sentration Units
IL0005126	02/28/2019	001-0	00011-1-0	Temperature, water deg.	Effluent Gross	48.7	deg F
IL0005126	01/31/2019	001-0	00011-1-0	Temperature, water deg.	Effluent Gross	52.9	deg F
IL0005126	12/31/2018	001-0	00011-1-0	Temperature, water deg.	Effluent Gross	46.6	deg F
IL0005126	03/31/2018	001-0	00011-1-0	Temperature, water deg. fahrenheit	Effluent Gross	51.8	deg F
IL0005126	02/28/2018	001-0	00011-1-0	Temperature, water deg.	Effluent Gross	51.8	deg F
IL0005126	01/31/2018	001-0	00011-1-0	Temperature, water deg.	Effluent Gross	54	deg F
IL0005126	12/31/2017	001-0	00011-1-0	Temperature, water deg. fahrenheit	Effluent Gross	56.6	deg F
IL0005126	03/31/2017	001-0	00011-1-0	Temperature, water deg.	Effluent Gross	58.5	deg F
IL0005126	02/28/2017	001-0	00011-1-0	Temperature, water deg.	Effluent Gross	57.6	deg F
IL0005126	01/31/2017	001-0	00011-1-0	Temperature, water deg.	Effluent Gross	54.3	deg F
IL0005126	12/31/2016	001-0	00011-1-0	Temperature, water deg. fahrenheit	Effluent Gross	49.3	deg F
IL0005126	03/31/2016	001-0	00011-1-0	Temperature, water deg. fahrenheit	Effluent Gross	55.9	deg F
IL0005126	02/29/2016	001-0	00011-1-0	Temperature, water deg. fahrenheit	Effluent Gross	59	deg F
IL0005126	01/31/2016	001-0	00011-1-0	Temperature, water deg. fahrenheit	Effluent Gross	55	deg F
IL0005126	12/31/2015	001-0	00011-1-0	Temperature, water deg.	Effluent Gross	61.3	deg F
IL0005126	03/31/2015	001-0	00011-1-0	Temperature, water deg. fahrenheit	Effluent Gross	63	deg F
IL0005126	02/28/2015	001-0	00011-1-0	Temperature, water deg.	Effluent Gross	45.9	deg F
IL0005126	01/31/2015	001-0	00011-1-0	Temperature, water deg. fahrenheit	Effluent Gross	42.6	deg F
IL0005126	12/31/2014	001-0	00011-1-0	Temperature, water deg. fahrenheit	Effluent Gross	48.33	deg F
IL0005126	03/31/2014	001-0	00011-1-0	Temperature, water deg.	Effluent Gross	56.8	deg F
IL0005126	02/28/2014	001-0	00011-1-0	Temperature, water deg.	Effluent Gross	45.68	deg F
IL0005126	01/31/2014	001-0	00011-1-0	Temperature, water deg. fahrenheit	Effluent Gross	52.1	deg F
IL0005126	11/30/2018	001-0	00011-1-1	Temperature, water deg.	Effluent Gross	50.7	deg F
IL0005126	10/31/2018	001-0	00011-1-1	Temperature, water deg.	Effluent Gross	64.9	deg F
IL0005126	09/30/2018	001-0	00011-1-1	Temperature, water deg.	Effluent Gross	75.4	deg F
IL0005126	08/31/2018	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	75.9	deg F
IL0005126	07/31/2018	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	79.9	deg F
IL0005126	06/30/2018	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	80.4	deg F
IL0005126	05/31/2018	001-0	00011-1-1	Temperature, water deg.	Effluent Gross	75.9	deg F
IL0005126	04/30/2018	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	55.6	deg F
IL0005126	11/30/2017	001-0	00011-1-1	Temperature, water deg.	Effluent Gross	53.4	deg F
IL0005126	10/31/2017	001-0	00011-1-1	Temperature, water deg.	Effluent Gross	68.2	deg F
IL0005126	09/30/2017	001-0	00011-1-1	Temperature, water deg.	Effluent Gross	75.6	deg F
IL0005126	08/31/2017	001-0	00011-1-1	fahrenheit Temperature, water deg.	Effluent Gross	74.3	deg F
IL0005126	07/31/2017	001-0	00011-1-1	fahrenheit Temperature, water deg.	Effluent Gross	75.7	deg F

IL0005126	06/30/2017	Elegtron	icolalling:	fahrenheit	c's Dffice 05/20/2020	74.5	R 54deg F
IL0005126	05/31/2017	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	72.3	deg F
L0005126	04/30/2017	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	64.2	deg F
IL0005126	11/30/2016	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	69.6	deg F
IL0005126	10/31/2016	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	70.2	deg F
IL0005126	09/30/2016	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	76.1	deg F
IL0005126	08/31/2016	001-0	00011-1-1	Temperature, water deg.	Effluent Gross	79.7	deg F
IL0005126	07/31/2016	001-0	00011-1-1	fahrenheit Temperature, water deg.	Effluent Gross	80.1	deg F
IL0005126	06/30/2016	001-0	00011-1-1	fahrenheit Temperature, water deg.	Effluent Gross	79.3	deg F
iL0005126	05/31/2016	001-0	00011-1-1	fahrenheit Temperature, water deg.	Effluent Gross	77.2	deg F
IL0005126	04/30/2016	001-0	00011-1-1	fahrenheit Temperature, water deg.	Effluent Gross	68	deg F
IL0005126	11/30/2015	001-0	00011-1-1	fahrenheit Temperature, water deg.	Effluent Gross	62.6	deg F
IL0005126	10/31/2015	001-0	00011-1-1	fahrenheit	Effluent Gross		
				Temperature, water deg. fahrenheit		68.7	deg F
IL0005126	09/30/2015	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	76.3	deg F
IL0005126	08/31/2015	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	80.4	deg F
L0005126	07/31/2015	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	78.8	deg F
IL0005126	06/30/2015	001-0	00011-1-1	Temperature, water deg.	Effluent Gross	80.8	deg F
IL0005126	05/31/2015	001-0	00011-1-1	Temperature, water deg.	Effluent Gross	72.3	deg F
IL0005126	04/30/2015	001-0	00011-1-1	fahrenheit Temperature, water deg.	Effluent Gross	65.8	deg F
IL0005126	11/30/2014	001-0	00011-1-1	fahrenheit Temperature, water deg.	Effluent Gross	68	deg F
IL0005126	10/31/2014	001-0	00011-1-1	fahrenheit Temperature, water deg.	Effluent Gross	74.4	deg F
\$L0005126	09/30/2014	001-0	00011-1-1	fahrenheit Temperature, water deg.	Effluent Gross	75.6	deg F
IL0005126	08/31/2014	001-0	00011-1-1	fahrenheit Temperature, water deg.	Effluent Gross	76.9	deg F
				fahrenheit			
IL0005126	07/31/2014	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	80.2	deg F
IL0005126	06/30/2014	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	74.8	deg F
IL0005126	05/31/2014	001-0	00011-1-1	Temperature, water deg. fahrenheit	Effluent Gross	76	deg F
IL0005126	04/30/2014	001-0	00011-1-1	Temperature, water deg.	Effluent Gross	60.8	deg F
IL0005126	02/28/2019	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross	800	mg/L
IL0005126	01/31/2019	001-0	00940-1-0	Chloride [as CI]	Effluent Gross	303	mg/L
IL0005126	12/31/2018	001-0	00940-1-0	Chloride [as CI]	Effluent Gross	179	mg/L
IL0005126	11/30/2018	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross	248	mg/L
IL0005126	10/31/2018	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross	271	mg/L
IL0005126	09/30/2018	001-0	00940-1-0	Chloride (as CI)	Effluent Gross	181	mg/L
IL0005126	08/31/2018	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross	517	mg/L
IL0005126	07/31/2018	001-0	00940-1-0	Chloride [as CI]	Effluent Gross	322	mg/L
IL0005126	06/30/2018	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross	395	mg/L
IL0005126	05/31/2018	001-0	00940-1-0	Chloride [as CI]	Effluent Gross	524	mg/L
IL0005126	04/30/2018	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross	104	mg/L
IL0005126	03/31/2018	001-0	00940-1-0	Chloride [as CI]	Effluent Gross	330	mg/L
IL0005126	02/28/2018	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross	650	mg/L
IL0005126	01/31/2018	001-0	00940-1-0	Chloride [as CI]	Effluent Gross	940	mo/l
120003120							

IL0005126				Received, Clerk's		12012020		R 55mg/L
IL0005126	10/31/2017	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		544	mg/L
IL0005126	09/30/2017	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		337	mg/L
IL0005126	08/31/2017	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		381	mg/Ľ
IL0005126	07/31/2017	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		80	mg/L
IL0005126	06/30/2017	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		412	mg/L
IL0005126	05/31/2017	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		285	mg/L
IL0005126	04/30/2017	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		273	mg/L
IL0005126	03/31/2017	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		295	mg/L
łL0005126	02/28/2017	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		428	mg/L
IL0005126	01/31/2017	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		388	mg/L
IL0005126	12/31/2016	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		326	mg/L
IL0005126	11/30/2016	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		370	mg/L
IL0005126	10/31/2016	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		285	mg/L
IL0005126	09/30/2016	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		273	mg/L
IL0005126	08/31/2016	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		205	mg/L
IL0005126	07/31/2016	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		226	mg/L
IL0005126	06/30/2016	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		184	mg/L
IL0005126	05/31/2016	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		207	mg/L
IL0005126	04/30/2016	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		223	mg/L
IL0005126	03/31/2016	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		180	mg/L
IL0005126	02/29/2016	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		155	mg/L
IL0005126	01/31/2016	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		215	mg/L
IL0005126	12/31/2015	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		47	mg/L
IL0005126	11/30/2015	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		258	mg/L
IL0005126	10/31/2015	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		413	mg/L
IL0005126	09/30/2015	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		328	mg/L
IL0005126	08/31/2015	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		643	mg/L
IL0005126	07/31/2015	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		332	mg/L
IL0005126	06/30/2015	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		301	mg/L
IL0005126	05/31/2015	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		334	mg/L
IL0005126	04/30/2015	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		378	mg/L
IL0005126	03/31/2015	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		720	mg/L
IL0005126	02/28/2015	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		524	mg/L
IL0005126	01/31/2015	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		660	mg/L
IL0005126	12/31/2014	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		521	mg/L
IL0005126	11/30/2014	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		770	mg/L
IL0005126	10/31/2014	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		230	mg/L
IL0005126	09/30/2014	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		227	mg/L
IL0005126	08/31/2014	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		225	mg/L
IL0005126	07/31/2014	001-0	00940-1-0	Chloride [as CI]	Effluent Gross		172	mg/L
IL0005126	06/30/2014	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		580	mg/L
IL0005126	05/31/2014	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		550	mg/L
IL0005126	04/30/2014	001-0	00940-1-0	Chloride [as Cl]	Effluent Gross		420	mg/L
IL0005126	03/31/2014	001-0	01007-1-0	Barium, total [as Ba]	Effluent Gross	.028	.028	mg/L
IL0005126	02/28/2014	001-0	01007-1-0	Barium, total [as Ba]	Effluent Gross	.029	.029	mg/L
IL0005126	01/31/2014	001-0	01007-1-0	Barium, total [as Ba]	Effluent Gross	.026	.026	mg/L
IL0005126	03/31/2014	001-Ò	01032-1-0	Chromium, hexavalent [as Cr]	Effluent Gross	1	< .005	mg/L
IL0005126	02/28/2014	001-0	01032-1-0	Chromium, hexavalent [as Cr]			< .005	mg/L
IL0005126	01/31/2014	001-0	01032-1-0	Chromium, hexavalent [as Cr]			< .005	mg/L
IL0005126	03/31/2014	001-0	01032-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	02/28/2014	001-0	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	
IL0005126	02/26/2014	001-0	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	02/28/2019	001-0	01034-1-0	Iron, total [as Fe]	Effluent Gross	0		mg/L
IL0005126	02/28/2019	001-0	01045-1-0	Iron, total [as Fe]	Linuent Giuss	.9	.9	mg/L

L0005126	12/31/2018			Receixed, Cl				R 56 _{ng/L}
L0005126	11/30/2018	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.27	.27	mg/L
L0005126	10/31/2018	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.26	.26	mg/L
L0005126	09/30/2018	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.24	.24	mg/L
L0005126	08/31/2018	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.32	.32	mg/L
L0005126	07/31/2018	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.51	.51	mg/L
L0005126	06/30/2018	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.35	.35	mg/L
L0005126	05/31/2018	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.47	.47	mg/L
IL0005126	04/30/2018	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.35	.35	mg/L
IL0005126	03/31/2018	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.44	.44	mg/L
IL0005126	02/28/2018	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.29	.29	mg/L
IL0005126	01/31/2018	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.17	.17	mg/L
L0005126	12/31/2017	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.25	.25	mg/L
IL0005126	11/30/2017	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.84	.84	mg/L
L0005126	10/31/2017	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.41	.41	mg/L
L0005126	09/30/2017	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.17	.17	mg/L
IL0005126	08/31/2017	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.82	.82	mg/L
IL0005126	07/31/2017	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.1	.1	mg/L
IL0005126	06/30/2017	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.2	.2	mg/L
IL0005126	05/31/2017	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.28	.28	mg/L
IL0005126	04/30/2017	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.48	.48	mg/L
IL0005126	03/31/2017	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	1.1	1.1	mg/L
IL0005126	02/28/2017	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.27	.27	mg/L
IL0005126	01/31/2017	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.23	.23	mg/L
IL0005126	12/31/2016	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.26	.26	mg/L
L0005126	11/30/2016	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.27	.27	mg/L
IL0005126	10/31/2016	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.43	.43	mg/L.
IL0005126	09/30/2016	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	1.13	1.13	mg/L
L0005126	08/31/2016	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.3	.3	mg/L
IL0005126	07/31/2016	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	1.02	1.02	mg/L
IL0005126	06/30/2016	001-0	01045-1-0	fron, total [as Fe]	Effluent Gross	.31	.31	mg/L
IL0005126	05/31/2016	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.26	.26	mg/L
IL0005126	04/30/2016	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.35	.35	mg/L
IL0005126	03/31/2016	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.52	.52	mg/L
IL0005126	02/29/2016	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.43	.43	mg/L
IL0005126	01/31/2016	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.22	.22	mg/L
IL0005126	12/31/2015	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.32	.32	mg/L
IL0005126	11/30/2015	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.48	.48	mg/L
IL0005126	10/31/2015	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.54	.54	mg/L
L0005126	09/30/2015	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.33	.33	mg/L
IL0005126	08/31/2015	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.34	.34	mg/L
IL0005126	07/31/2015	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.62	.62	mg/L
IL0005126	06/30/2015	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.15	.15	mg/L
IL0005126	05/31/2015	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.14	.14	mg/L
£0005126	04/30/2015	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.22	.22	mg/L
IL0005126	03/31/2015	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.21	.21	mg/L
L0005126	02/28/2015	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.33	.33	
L0005126	01/31/2015	001-0	01045-1-0	fron, total [as Fe]	Effluent Gross	.28	.28	mg/L
IL0005126	12/31/2014	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.66		mg/L
							.66	mg/L
IL0005126	11/30/2014	001-0	01045-1-0	Iron, total (as Fe)	Effluent Gross	.17	.17	mg/L
IL0005126	10/31/2014	001-0	01045-1-0	Iron, total (as Fe)	Effluent Gross	.48	.48	mg/L
IL0005126	09/30/2014	001-0	01045-1-0	Iron, total (as Fe)	Effluent Gross	.49	.49	mg/L
IL0005126 IL0005126	08/31/2014	001-0	01045-1-0	Iron, total (as Fe)	Effluent Gross	.2	.2	mg/L
	07/31/2014	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.62	.62	mg/L

IL0005126	05/31/2014			Received, Clerk'				R 57mg/L
IL0005126	04/30/2014	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.53	.53	mg/L
IL0005126	03/31/2014	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.3	.3	mg/L
IL0005126	02/28/2014	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.32	.32	mg/L
IL0005126	01/31/2014	001-0	01045-1-0	Iron, total [as Fe]	Effluent Gross	.1	.1	mg/L
IL0005126	03/31/2014	001-0	34694-1-0	Phenol	Effluent Gross		< .01	mg/L
IL0005126	02/28/2014	001-0	34694-1-0	Phenol	Effluent Gross		< .01	mg/L
IL0005126	01/31/2014	001-0	34694-1-0	Phenol	Effluent Gross		< .01	mg/L
IL0005126	03/31/2014	001-Q	00340-1-0	Oxygen demand, chem. [high level] [COD]	Effluent Gross		38	mg/L
IL0005126	12/31/2018	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	09/30/2018	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2018	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	03/31/2018	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		NODI B	mg/L
IL0005126	12/31/2017	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	09/30/2017	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2017	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross.		< .005	mg/L
IL0005126	03/31/2017	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	12/31/2016	001-Q	00720-1-0	Cyanide, total (as CN)	Effluent Gross		< .005	mg/L
IL0005126	09/30/2016	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2016	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	03/31/2016	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	12/31/2015	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	09/30/2015	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2015	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	03/31/2015	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	12/31/2014	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	09/30/2014	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2014	001-Q	00720-1-0	Cyanide, total [as CN]	Effluent Gross		< .005	mg/L
IL0005126	12/31/2018	001-Q	00948-1-0	Asbestos	Effluent Gross		< .00015	Fib/L
	09/30/2018	001-Q	00948-1-0	Asbestos	Effluent Gross		< .00015	Fib/L
IL0005126		001-Q	00948-1-0	Asbestos	Effluent Gross			
IL0005126	06/30/2018		00948-1-0				< .00015	Fib/L
IL0005126	03/31/2018	001-Q		Asbestos	Effluent Gross		NODI B	Fib/L
IL0005126	12/31/2017	001-Q	00948-1-0	Asbestos	Effluent Gross		< .00015	Fib/L
IL0005126	09/30/2017	001-Q	00948-1-0	Asbestos	Effluent Gross		< .00015	Fib/L
IL0005126	06/30/2017	001-Q	00948-1-0	Asbestos	Effluent Gross		< .15	Fib/L
IL0005126	03/31/2017	001-Q	00948-1-0	Asbestos	Effluent Gross		< .15	Fib/L
IL0005126	12/31/2016	001-Q	00948-1-0	Asbestos	Effluent Gross		< .00015	Fib/L
IL0005126	09/30/2016	001-Q	00948-1-0	Asbestos	Effluent Gross		< .15	Fib/L
IL0005126	06/30/2016	001-Q	00948-1-0	Asbestos	Effluent Gross	. 12	< .15	Fib/L
IL0005126	03/31/2016	001-Q	00948-1-0	Asbestos	Effluent Gross		< .1	Fib/L
IL0005126	12/31/2015	001-Q	00948-1-0	Asbestos	Effluent Gross		< 2	MF/L
IL0005126	09/30/2015	001-Q	00948-1-0	Asbestos	Effluent Gross		< 150000	Fib/L
IL0005126	06/30/2015	001-Q	00948-1-0	Asbestos	Effluent Gross		< .31	Fib/L
IL0005126	03/31/2015	001-Q	00948-1-0	Asbestos	Effluent Gross		< 2	MF/L
IL0005126	12/31/2014	001-Q	00948-1-0	Asbestos	Effluent Gross		< .15	MF/L
IL0005126	09/30/2014	001-Q	00948-1-0	Asbestos	Effluent Gross		< .15	Fib/L
IL0005126	06/30/2014	001-Q	00948-1-0 .	Asbestos	Effluent Gross		< .0015	Fib/L
IL0005126	12/31/2018	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross			mg/L
IL0005126	09/30/2018	001-Q	01002-1-0	Arsenic, total (as As)	Effluent Gross		< .01	mg/L
IL0005126	06/30/2018	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		< .01	mg/L
IL0005126	03/31/2018	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		NODI B	mg/L
IL0005126	12/31/2017	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		< .01	mg/L
IL0005126	09/30/2017	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		< .01	mg/L
IL0005126	06/30/2017	001-Q	01002-1-0	Arsenic total [as As]	Effluent Gross		< 01	ma/L
(L0005126	03/31/2017	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		< .01	mg/L

IL0005126	12/31/2016			Received		1201202		R 58mg/L
L0005126	09/30/2016	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		<.01	mg/L
IL0005126	06/30/2016	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		< .01	mg/L
L0005126	03/31/2016	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		< .01	mg/L
L0005126	12/31/2015	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		<.01	mg/L
L0005126	09/30/2015	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		<.01	mg/L
L0005126	06/30/2015	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		<.01	mg/L
L0005126	03/31/2015	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		<.01	mg/L
L0005126	12/31/2014	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		<.01	mg/L
L0005126	09/30/2014	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		< .01	mg/L
L0005126	06/30/2014	001-Q	01002-1-0	Arsenic, total [as As]	Effluent Gross		< .01	mg/L
IL0005126	12/31/2018	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross			mg/L
L0005126	09/30/2018	001-Q	01007-1-0	Barium, total (as Ba)	Effluent Gross	.023	.023	mg/L
L0005126	06/30/2018	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.041	.041	mg/L
L0005126	03/31/2018	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.034	.034	mg/L
L0005126	12/31/2017	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.035	.035	mg/L
L0005126	09/30/2017	001-Q	01007-1-0	Barium, total (as Ba)	Effluent Gross	.03	.03	mg/L
L0005126	06/30/2017	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.04	.04	mg/L
IL0005126	03/31/2017	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.036	.036	mg/L
IL0005126	12/31/2016	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.03	.03	mg/L
L0005126	09/30/2016	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.029	.029	mg/L
IL0005126	06/30/2016	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.028	.028	mg/L
IL0005126	03/31/2016	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.017	.017	mg/L
L0005126	12/31/2015	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.033	.033	mg/L
IL0005126	09/30/2015	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.032	.032	mg/L
IL0005126	06/30/2015	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.019	.019	mg/L
IL0005126	03/31/2015	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.039	.039	mg/L
IL0005126	12/31/2014	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.029	.029	mg/L
IL0005126	09/30/2014	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.359	.359	mg/L
IL0005126	06/30/2014	001-Q	01007-1-0	Barium, total [as Ba]	Effluent Gross	.049	.049	mg/L
L0005126	12/31/2018	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross			mg/L
IL0005126	09/30/2018	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	06/30/2018	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	03/31/2018	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		NODI B	mg/L
IL0005126	12/31/2017	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross	231	< .004	mg/L
IL0005126	09/30/2017	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	06/30/2017	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	03/31/2017	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	12/31/2016	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	09/30/2016	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	06/30/2016	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	03/31/2016	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	12/31/2015	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	09/30/2015	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	06/30/2015	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	03/31/2015	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	12/31/2014	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	09/30/2014	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	06/30/2014	001-Q	01012-1-0	Beryllium, total [as Be]	Effluent Gross		< .004	mg/L
IL0005126	12/31/2018	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		İ	mg/L
IL0005126	09/30/2018	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2018	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L
IL0005126	03/31/2018	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		NODI B	mg/L
IL0005126	12/31/2017	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross	-	< .005	mg/L
IL0005126	12/31/2017	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L

1L0005126	06/30/2017			Received, Glerk'		3/20/202	1	R 59 ^{mg/L}
IL0005126	03/31/2017	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L
IL0005126	12/31/2016	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L
IL0005126	09/30/2016	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2016	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L
IL0005126	03/31/2016	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L
IL0005126	12/31/2015	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L
IL0005126	09/30/2015	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2015	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L
IL0005126	03/31/2015	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L
IL0005126	12/31/2014	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L
IL0005126	09/30/2014	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2014	001-Q	01027-1-0	Cadmium, total [as Cd]	Effluent Gross		< .005	mg/L
IL0005126	12/31/2018	001-Q	01032-1-0	Chromium, hexavalent [as Cr]	Effluent Gross			mg/L
IL0005126	09/30/2018	001-Q	01032-1-0	Chromium, hexavalent [as Cr]	Effluent Gross	< .005	< .005	mg/L
IL0005126	06/30/2018	001-Q	01032-1-0	Chromium, hexavalent [as Cr]	Effluent Gross	< .005	< .005	mg/L
IL0005126	03/31/2018	001-Q	01032-1-0	Chromium, hexavalent [as Cr]	Effluent Gross	NODI B	NODI B	mg/L
IL0005126	12/31/2017	001-Q	01032-1-0	Chromium, hexavalent [as Cr]	Effluent Gross	< .005	< .005	mg/L
IL0005126	09/30/2017	001-Q	01032-1-0	Chromium, hexavalent [as Cr]		< .005	< .005	mg/L
IL0005126	06/30/2017	001-Q	01032-1-0	Chromium, hexavalent [as Cr]	1	< .005	< .005	mg/L
IL0005126	03/31/2017	001-Q	01032-1-0	Chromium, hexavalent [as Cr]		< .005	< .005	mg/L
IL0005126	12/31/2016	001-Q	· 01032-1-0	Chromium, hexavalent [as Cr]	1	< .005	< .005	mg/L
IL0005126	09/30/2016	001-Q	01032-1-0	Chromium, hexavalent [as Cr]		< .005	< .005	mg/L
IL0005126	06/30/2016	001-Q	01032-1-0	Chromium, hexavalent [as Cr]		< .005	< .005	mg/L
(L0005126	03/31/2016	001-Q	01032-1-0	Chromium, hexavalent [as Cr]		< .005	< .005	mg/L
IL0005126	12/31/2015	001-Q	01032-1-0	Chromium, hexavalent [as Cr]		< .005	< .005	-
IL0005126	09/30/2015	001-Q	01032-1-0	Chromium, hexavalent [as Cr]		< .005	< .005	mg/L
IL0005126	06/30/2015	001-Q	01032-1-0	Chromium, hexavalent [as Cr]		< .005	< .005	, mg/L
	03/31/2015	001-Q	01032-1-0	Chromium, hexavalent [as Cr]				mg/L
IL0005126	12/31/2014			Chromium, hexavalent [as Cr]		< .005	< .005	mg/L
IL0005126		001-Q	01032-1-0			< .005	< .005	mg/L
IL0005126	09/30/2014	001-Q	01032-1-0	Chromium, hexavalent [as Cr]	Effluent Gross	< .005	< .005	mg/L
IL0005126	06/30/2014	001-Q	01032-1-0	Chromium, hexavalent [as Cr]		< .005	< .005	mg/L
IL0005126	12/31/2018	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross			mg/L
IL0005126	09/30/2018	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2018	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	03/31/2018	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		NODI B	mg/L
IL0005126	12/31/2017	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	09/30/2017	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2017	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	03/31/2017	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	12/31/2016	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	09/30/2016	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2016	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	03/31/2016	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	12/31/2015	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	09/30/2015	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2015	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	03/31/2015	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	12/31/2014	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	09/30/2014	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2014	001-Q	01034-1-0	Chromium, total [as Cr]	Effluent Gross	1:	< .005	mg/L
IL0005126	12/31/2018	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross			mg/L
IL0005126	09/30/2018	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross		< .005	mg/L
IL0005126	06/30/2018	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross		.007	mg/L
IL0005126	03/31/2018	001-Q	01042-1-0	Copper, total [as Cu]	Emuent Gross		NODI B	mg/L

IL0005126					rk's Office 05/20/		R 60mg/L
L0005126	09/30/2017	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross	.008	mg/L
IL0005126	06/30/2017	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross	.01	mg/L
IL0005126	03/31/2017	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross	<.005	mg/L
IL0005126	09/30/2016	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross	.007	mg/L
IL0005126	06/30/2016	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross	.006	mg/L
IL0005126	03/31/2016	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross	< .005	mg/L
IL0005126	09/30/2015	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross	< .005	mg/L
IL0005126	03/31/2015	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross	< .005	mg/L
iL0005126	06/30/2014	001-Q	01042-1-0	Copper, total [as Cu]	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross		mg/L
IL0005126	09/30/2018	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	NODI B	mg/L
IL0005126	12/31/2017	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
(L0005126	09/30/2016	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
IL0005126	03/31/2016	001-Q	01051-1-0	Lead, total (as Pb)	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
IL0005126	09/30/2015	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
IL0005126	03/31/2015	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	001-Q	01051-1-0	Lead, total [as Pb]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross		mg/L
IL0005126	09/30/2018	001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross	< .01	mg/L
£0005126	03/31/2018	001-Q	01059-1-0	Thallium, total [as Ti]	Effluent Gross	NODI B	mg/L
IL0005126	12/31/2017	001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	01059-1-0	Thallium, total [as T!]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	01059-1-0	Thallium, total [as Ti]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross	< .01	mg/L
£0005126	12/31/2014	001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	01059-1-0	Thallium, total [as Ti]	Effluent Gross	< .01	
IL0005126	06/30/2014	001-Q 001-Q	01059-1-0	Thallium, total [as TI]	Effluent Gross	< .01	mg/L
		001-Q	01059-1-0	Nickel, total [as Ni]	Effluent Gross	7.01	mg/L
IL0005126	12/31/2018	001-Q	01067-1-0	Nickel, total [as Ni]	Effluent Gross	< .005	mg/L mg/L

L0005126	06/30/2018 03/31/2018	001-Q	01067-1-0	Received Cle	Effluent Gross	012012020) .005 NODI B	R 61mg/L mg/L
L0005126	12/31/2017	001-Q	01067-1-0	Nickel, total [as Ni]	Effluent Gross		< .005	mg/L
L0005126	09/30/2017	001-Q	01067-1-0	Nickel, total [as Ni]	Effluent Gross		<.005	
L0005126	06/30/2017	001-Q	01067-1-0	Nickel, total [as Ni]	Effluent Gross		<.005	mg/L
L0005126	03/31/2017	001-Q	01067-1-0	Nickel, total [as Ni]	Effluent Gross		.005	mg/L
L0005126	12/31/2016	001-Q	01067-1-0	Nickel, total [as Ni]	Effluent Gross		.006	mg/L
L0005126	09/30/2016	001-Q	01067-1-0	Nickel, total [as Ni]	Effluent Gross		< .005	mg/L
L0005126	06/30/2016	001-Q	01067-1-0	Nickel, total [as Ni]	Effluent Gross		< .005	mg/L
L0005126	03/31/2016	001-Q	01067-1-0	Nickel, total [as Ni]	Effluent Gross		< .005	mg/L
L0005126	12/31/2015	001-Q	01067-1-0	Nickel, total [as Ni]	Effluent Gross			mg/L
L0005126	09/30/2015	001-Q	01067-1-0	Nickel, total [as Ni]	Effluent Gross		< .005	mg/L
L0005126	06/30/2015	001-Q	01067-1-0	Nickel, total [as Ni]	Effluent Gross		< .005	mg/L
	03/31/2015	001-Q	01067-1-0				< .005	mg/L
L0005126	12/31/2014	001-Q	01007-1-0	Nickel, total [as Ni]	Effluent Gross		< .005	mg/L
L0005126		001-Q 001-Q	01067-1-0	Nickel, total [as Ni]	Effluent Gross		< .005	mg/L
L0005126	09/30/2014			Nickel, total [as Ni]	Effluent Gross		< .005	mg/L
L0005126	06/30/2014	001-Q	01067-1-0	Nickel, total [as Ni]	Effluent Gross		< .005	mg/L
L0005126	12/31/2018 09/30/2018	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		- 005	mg/L
L0005126		001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	06/30/2018	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126		001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		NODI B	mg/L
L0005126	12/31/2017	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	09/30/2017	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	06/30/2017	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	03/31/2017	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	12/31/2016	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	09/30/2016	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	06/30/2016	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	03/31/2016	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	12/31/2015	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	09/30/2015	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	06/30/2015	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	03/31/2015	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross	**	< .005	mg/L
L0005126	12/31/2014	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	09/30/2014	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	06/30/2014	001-Q	01077-1-0	Silver, total [as Ag]	Effluent Gross		< .005	mg/L
L0005126	12/31/2018	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross			mg/L
L0005126	09/30/2018	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		< .01	mg/L
L0005126	06/30/2018	001-Q	01092-1-0	Zinc, total (as Zn)	Effluent Gross		.015	mg/L
L0005126	03/31/2018	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross	-	NODI B	mg/L
L0005126	12/31/2017	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		< .01	mg/L
L0005126	09/30/2017	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		.02	mg/L
L0005126	06/30/2017	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		.019	mg/L
L0005126	03/31/2017	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		.027	mg/L
L0005126	12/31/2016	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		.022	mg/L
L0005126	09/30/2016	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		.026	mg/L
L0005126	06/30/2016	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		.03	mg/L
L0005126	03/31/2016	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		< .01	mg/L
L0005126	12/31/2015	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		.016	mg/L
L0005126	09/30/2015	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		.02	mg/L
L0005126	06/30/2015	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		.015	mg/L
L0005126	03/31/2015	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		.012	mg/L
L0005126	12/31/2014	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		< .01	mg/L
L0005126	09/30/2014	001-Q	01092-1-0	Zinc, total [as Zn]	Effluent Gross		.01	mg/L
L0005126	06/30/2014	001-Q	01092-1-0	Zinc, total (as Znj	Emuent Gross		:037	mg/iL

IL0005126				Received, Clerk's			R 62ma(L
IL0005126	09/30/2018	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	< .006	mg/L
IL0005126	06/30/2018	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	<.006	mg/L
IL0005126	03/31/2018	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	NODIB	mg/L
IL0005126	12/31/2017	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	<.O06	mg/L
IL0005126	09/30/2017	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	< .O06	mg/L
IL0005126	06/30/2017	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	< .006	mg/L
IL0005126	03/31/2017	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	< .006	mg/L
IL0005126	09/30/2016	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	< .006	mg/L
IL0005126	06/30/2016	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	<.006	mg/L
IL0005126	03/31/2016	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	<.006	mg/L
IL0005126	12/31/2015	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	< .006	mg/L
IL0005126	09/30/2015	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	<.006	mg/L
L0005126	06/30/2015	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	< .006	mg/L
IL0005126	03/31/2015	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	< .006	mg/L
IL0005126	12/31/2014	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	< .006	mg/L
L0005126	09/30/2014	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	< .006	mg/L
IL0005126	06/30/2014	001-Q	01097-1-0	Antimony, total [as Sb]	Effluent Gross	< .006	mg/L
IL0005126	12/31/2018	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross		mg/L
IL0005126	09/30/2018	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	NODI B	mg/L
IL0005126	12/31/2017	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	<.01	mg/L
IL0005126	12/31/2016	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	< .01	
	09/30/2016	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross		mg/L
IL0005126 IL0005126		001-Q	01147-1-0	Selenium, total [as Se]		< .01	mg/L
	06/30/2016				Effluent Gross	<.01	mg/L
IL0005126	03/31/2016	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	01147-1-0	Selenium, total [as Se]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	01,147-1-0	Selenium, total [as Se]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin	Effluent Gross	< .1	mg/L
IL0005126	09/30/2018	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin	Effluent Gross	<.1	mg/L
IL0005126	06/30/2018	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin	Effluent Gross	<.1	mg/L
IL0005126	03/31/2018	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin		NODI B	mg/L
IL0005126	12/31/2017	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin		< .01	mg/L
IL0005126	09/30/2017	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin		<.1	mg/L
IL0005126	06/30/2017	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin		< 1000	mg/L
IL0005126	03/31/2017	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin		< 100	mg/L
IL0005126	12/31/2016	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin		<.1	mg/L
IL0005126	09/30/2016	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin		< .01	mg/L
IL0005126	06/30/2016	001-Q	03556-1-0	2,3,7,8-Tetrachiorodibenzo-p-	Effluent Gross	< .01	mg/L

L0005126	03/31/2016	□ I SOUTH OF	restring:	dioxin	£¶@ffiœe 05/20/20	20 < .1	R 63 ^{mg/L}
L0005126	12/31/2015	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p-dioxin	Effluent Gross	< .1	mg/L
L0005126	09/30/2015	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin	Effluent Gross	< .1	mg/L
IL0005126	06/30/2015	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin	Effluent Gross	< 100	mg/L
IL0005126	03/31/2015	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin	Effluent Gross	< 0	mg/L
IL0005126	12/31/2014	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin	Effluent Gross	< .1	mg/L
IL0005126	09/30/2014	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin	Effluent Gross	< .1	mg/L.
IL0005126	06/30/2014	001-Q	03556-1-0	2,3,7,8-Tetrachlorodibenzo-p- dioxin	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	09/30/2018	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	06/30/2018	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	03/31/2018	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	12/31/2017	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	09/30/2017	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	06/30/2017	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	03/31/2017	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	12/31/2016	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	09/30/2016	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	06/30/2016	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	03/31/2016	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	12/31/2015	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
1L0005126	09/30/2015	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	06/30/2015	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	03/31/2015	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	12/31/2014	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	09/30/2014	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	06/30/2014	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	.001	mg/L
IL0005126	03/31/2014	001-Q	32101-1-0	Dichlorobromomethane	Effluent Gross	<.001	
IL0005126	12/31/2018	001-Q	32101-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
		001-Q 001-Q	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	32102-1-0		Effluent Gross		mg/L
IL0005126	03/31/2018		32102-1-0	Carbon tetrachloride Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	001-Q				< .005	mg/L
IL0005126	09/30/2017	001-Q	32102-1-0	Carbon tetrachloride Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	32102-1-0		Effluent Gross Effluent Gross	< .005 < .005	mg/L
IL0005126	03/31/2017	001-Q	32102-1-0	Carbon tetrachloride			mg/L
IL0005126	12/31/2016	001-Q	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	03/31/2016	001-Q	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	001-Q	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	09/30/2015	001-Q	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
iL0005126	06/30/2015	001-Q	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	03/31/2015	001-Q	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	001-Q	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	001-Q	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	001-Q	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
IL0005126	09/30/2018	001-Q	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
IL0005126	06/30/2018	001-Q	32104-1-0	ыготоют	Linuent Gross	₹.001	10

_0005126					k's Office 05/20/		R 64mg/L
_0005126	12/31/2017	001-Q	32104-1-0	Bromoform	Effluent Gross	< . 001	mg/L
L0005126	09/30/2017	001-Q	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
L0005126	06/30/2017	001-Q	32104-1-0	Bromoform	Effluent Gross	< . 001	mg/L
L0005126	03/31/2017	001-Q	32104-1-0	Bromoform	Effluent Gross	< . O 01	mg/L
L0005126	12/31/2016	001-Q	32104-1-0	Bromoform	Effluent Gross	< . O01	mg/L
L0005126	09/30/2016	001-Q	32104-1-0	Bromoform	Effluent Gross	< .O01	mg/L
L0005126	06/30/2016	001-Q	32104-1-0	Bromoform	Effluent Gross	< . O01	mg/L
L0005126	03/31/2016	001-Q	32104-1-0	Bromoform	Effluent Gross	< .O01	mg/L
L0005126	12/31/2015	001-Q	32104-1-0	Bromoform	Effluent Gross	<.O01	mg/L
L0005126	09/30/2015	001-Q	32104-1-0	Bromoform	Effluent Gross	< . O 01	mg/L
L0005126	06/30/2015	001-Q	32104-1-0	Bromoform	Effluent Gross	< .O01	mg/L
L0005126	03/31/2015	001-Q	32104-1-0	Bromoform	Effluent Gross	< .O01	mg/L
L0005126	12/31/2014	001-Q	32104-1-0	Bromoform	Effluent Gross	< .Ö01	mg/L
L0005126	09/30/2014	001-Q	32104-1-0	Bromoform	Effluent Gross	< .O01	mg/L
L0005126	06/30/2014	001-Q	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
L0005126	03/31/2014	001-Q	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
L0005126	03/31/2014	001-Q	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
L0005126	12/31/2018	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	09/30/2018	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	06/30/2018	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	03/31/2018	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	12/31/2017	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	09/30/2017	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	06/30/2017	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	03/31/2017	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	12/31/2016	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	09/30/2016	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	06/30/2016	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	03/31/2016	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	12/31/2015	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	09/30/2015	001-Q	32106-1-0	Chioroform	Effluent Gross	< .001	mg/L
L0005126	06/30/2015	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	03/31/2015	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	12/31/2014	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	09/30/2014	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	06/30/2014	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
IL0005126	03/31/2014	001-Q	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
IL0005126	12/31/2018	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
L0005126	09/30/2018	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
L0005126	03/31/2018	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
	03/31/2016	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	-
IL0005126 IL0005126	12/31/2015	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
iL0005126	09/30/2015	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
					Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q 001-Q	34010-1-0 34010-1-0	Toluene	Effluent Gross		mg/L
!L0005126	03/31/2015			Toluene	Ettinost (Fross	< .005	mg/L

IL0005126	09/30/2014	Eleଫtfon	i∂°Piling:	Received, Cl	erk' \$*®ffice *05/20/2	2020 <.005 F	R 65 ^{mg/L}
IL0005126	06/30/2014	001-Q	34010-1-0	Toluene	Effluent Gross	<.005	mg/L
IL0005126	03/31/2014	001-Q	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	001-Q	34030-1-0	Benzene	Effluent Gross	<.005	mg/L
IL0005126	09/30/2018	001-Q	34030-1-0	Benzene	Effluent Gross	<.005	mg/L
IL0005126	06/30/2018	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	34030-1-0	Benzene	Effluent Gross	<.005	mg/L
IL0005126	12/31/2017	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
1L0005126	06/30/2016	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2016	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
1L0005126	09/30/2015	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2015	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34200-1-0	Acenaphthylene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34205-1-0	Acenaphthene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34205-1-0	Acenaphthene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34205-1-0	Acenaphthene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34205-1-0	Acenaphthene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34205-1-0	Acenaphthene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34205-1-0	Acenaphthene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34205-1-0	Acenaphthene	Effluent Gross	<.01	
IL0005126	03/31/2017	001-Q	34205-1-0	Acenaphthene	Effluent Gross	< .01	mg/L
	12/31/2016	001-Q	34205-1-0	Acenaphthene	Effluent Gross		mg/L
IL0005126	09/30/2016	001-Q 001-Q	34205-1-0			< .01	mg/L
IL0005126	06/30/2016		34205-1-0	Acenaphthene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	342U0-1-U	Acenaphthene	Effluent Gross	< .01	mg/L

L0005126					erk's fuffices 05/20/2		R 66me/L
	.09/30/2015	001-Q	34205-1-0	Acenaphthene		< .01	mg/L
L0005126	06/30/2015	001-Q	34205-1-0	Acenaphthene	Effluent Gross	< .01	mg/L
L0005126	03/31/2015	001-Q	34205-1-0	Acenaphthene	Effluent Gross	< .01	mg/L
L0005126	12/31/2014	001-Q	34205-1-0	Acenaphthene	Effluent Gross	< .01	mg/L
L0005126	09/30/2014	001-Q	34205-1-0	Acenaphthene	Effluent Gross	< .01	mg/L
L0005126	06/30/2014	001-Q	34205-1-0	Acenaphthene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34205-1-0	Acenaphthene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	09/30/2018	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	06/30/2018	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	03/31/2018	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	12/31/2017	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
L0005126	09/30/2017	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	06/30/2017	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	03/31/2017	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	12/31/2016	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	09/30/2016	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	06/30/2016	001-Q	34210-1-0	Acrolein	Effluent Gross	<.1	mg/L
IL0005126	03/31/2016	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	12/31/2015	001-Q	34210-1-0	Acrolein	Effluent Gross	<.1	mg/L
IL0005126	09/30/2015	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	06/30/2015	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	03/31/2015	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	12/31/2014	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	09/30/2014	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	06/30/2014	001-Q	34210-1-0	Acrolein	Effluent Gross	< .1	mg/L
IL0005126	03/31/2014	001-Q	34210-1-0	Acrolein	Effluent Gross	<:.1	mg/L
IL0005126	12/31/2018	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	< .1	mg/L
IL0005126	09/30/2018	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	<.1	mg/L
IL0005126	06/30/2018	001-Q	34215-1-0	Acrylonitrile '	Effluent Gross	<.1	mg/L
IL0005126	03/31/2018	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	<.1	mg/L
IL0005126	12/31/2017	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	<.1	mg/L
IL0005126	09/30/2017	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	<.1	mg/L
IL0005126	06/30/2017	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	< .1	mg/L
IL0005126	03/31/2017	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	< .1	mg/L
IL0005126	12/31/2016	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	<.1	mg/L
IL0005126	09/30/2016	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	<.1	mg/L
IL0005126	06/30/2016	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	<.1	mg/L
IL0005126	03/31/2016	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	<.1	mg/L
IL0005126	12/31/2015	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	< .1	mg/L
IL0005126	09/30/2015	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	< .1	mg/L
IL0005126	06/30/2015	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	<.1	mg/L
IL0005126	03/31/2015	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	< .1	mg/L
IL0005126	12/31/2014	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	<.1	mg/L
IL0005126	09/30/2014	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	<.1	mg/L
IL0005126	06/30/2014	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	<.1	mg/L
IL0005126	03/31/2014	001-Q	34215-1-0	Acrylonitrile	Effluent Gross	<.1	mg/L
IL0005126	12/31/2018	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
160003120	09/30/2017	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L

IL0005126	03/31/2017			Received, Clerk			R 67mg/L
IL0005126	12/31/2016	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
L0005126	06/30/2016	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
L0005126	03/31/2016	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34220-1-0	Anthracene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34230-1-0	Benzo(b)fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34230-1-0	Benzo[b]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34242-1-0	Benzo[k]fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	
IL0005126	12/31/2014	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34247-1-0	Benzo[a]pyrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34259-1-0	T.deltaBenzenehexachloride	Effluent Gross	< .00005	mg/L

L0005126			4	Raceivad. Clerk'			R 68 _{mg(L}
L0005126	06/30/2018	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	<.00005	mg/L
L0005126	03/31/2018	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	< .0005	mg/L
L0005126	12/31/2017	001-Q	34259-1-0	deltaBenzenehexachloride	Effluent Gross	< .00005	mg/L
L0005126	09/30/2017	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	<.00005	mg/L
L0005126	06/30/2017	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	< .00005	mg/L
L0005126	03/31/2017	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	< .00005	mg/L
IL0005126	12/31/2016	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	< .00005	mg/L
IL0005126	09/30/2016	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	<.0001	mg/L
IL0005126	06/30/2016	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	< .00005	mg/L
IL0005126	03/31/2016	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	<.00005	mg/L
IL0005126	12/31/2015	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	<.00005	mg/L
IL0005126	09/30/2015	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	< .00005	mg/L
IL0005126	06/30/2015	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	< .00005	mg/L
L0005126	03/31/2015	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	< .00005	mg/L
IL0005126	12/31/2014	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	< .00005	mg/L
IL0005126	09/30/2014	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	< .00005	mg/L
L0005126	06/30/2014	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	< .00005	mg/L
IL0005126	03/31/2014	001-Q	34259-1-0	.deltaBenzenehexachloride	Effluent Gross	< .00005	mg/L
IL0005126	12/31/2018	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
!L0005126	06/30/2014	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34273-1-0	Bis[2-chloroethyl] ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/l
IL0005126	03/31/2016	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/l
IL0005126	12/31/2015	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	. 09/30/2015	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	08/30/2015	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L

IL00055126	12/31/2014			Received, i Clerk	'\$f@ffice:05/20/20		R 69 ^{mg/L}
IL0005126	09/30/2014	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34278-1-0	Bis[2-chloroethoxy]methane	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34283-1-0	Bis[2-chloroisopropyl] ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34292-1-0	Butyl benzyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .005	
IL0005126	03/31/2018	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q 001-Q	34301-1-0	Chlorobenzene	Effluent Gross		mg/L
IL0005126	09/30/2017	001-Q	34301-1-0		Effluent Gross	< .005	mg/L
				Chlorobenzene		< .005	mg/L
IL0005126	03/31/2017	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L

L0005126				Received, Clerk			R 70mgdL
.0005126	12/31/2015	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .O05	mg/L
.0005126	09/30/2015	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .O05	mg/L
.0005126	06/30/2015	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
.0005126	03/31/2015	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	<.005	mg/L
.0005126	12/31/2014	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
.0005126	09/30/2014	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
.0005126	06/30/2014	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
.0005126	03/31/2014	001-Q	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
.0005126	12/31/2018	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	< .001	mg/L
_0005126	09/30/2018	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	<.001	mg/L
L0005126	06/30/2018	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	<.001	mg/L
L0005126	03/31/2018	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	< .001	mg/L
_0005126	12/31/2017	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	<.001	mg/L
L0005126	09/30/2017	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	< .001	mg/L
.0005126	06/30/2017	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	< .001	mg/L
L0005126	03/31/2017	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	< .005	mg/L
.0005126	12/31/2016	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	< .001	mg/L
0005126	09/30/2016	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	< .005	mg/L
.0005126	06/30/2016	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	< .001	mg/L
L0005126	03/31/2016	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	< .005	mg/L
L0005126	09/30/2015	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	< .005	mg/L
L0005126	03/31/2015	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	.005	mg/L
L0005126	12/31/2014	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	< .005	mg/L
.0005126	09/30/2014	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	<.005	mg/L
L0005126	06/30/2014	001-Q	34306-1-0	Chlorodibromomethane	Effluent Gross	< .001	mg/L
L0005126	12/31/2018	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	09/30/2018	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	<.01	mg/L
L0005126	06/30/2018	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	03/31/2018	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	<.01	mg/L
L0005126	06/30/2017	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	<.01	mg/L
L0005126	03/31/2017	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	<.01	mg/L
L0005126	12/31/2016	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	<.01	mg/L
L0005126	09/30/2016	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	<.01	mg/L
L0005126	06/30/2016	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	03/31/2016	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	12/31/2015	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	09/30/2015	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	06/30/2015	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	03/31/2015	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	12/31/2014	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	09/30/2014	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	06/30/2014	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	<.01	mg/L
L0005126	03/31/2014	001-Q	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	12/31/2018	001-Q	34320-1-0	Chrysene	Effluent Gross	< .01	mg/L
L0005126	09/30/2018	001-Q 001-Q	34320-1-0		Effluent Gross	< .01	mg/L
	06/30/2018	001-Q	34320-1-0	Chrysene	Effluent Gross	< .01	
(L0005126			34320-1-0	Chrysene			mg/L
IL0005126	03/31/2018	001-Q		Chrysene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34320-1-0	Chrysene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34320-1-0	Chrysene	Effluent Gross	< .01	mg/L

L0005126	03/31/2017	001-Q	34320-1-0	Received, Cler	Effluent Gross	2020 < .01 < .01	R 71mg/L
	09/30/2016	001-Q 001-Q	34320-1-0	Chrysene	Effluent Gross	< .01	mg/L
L0005126							mg/L
L0005126	06/30/2016	001-Q	34320-1-0	Chrysene	Effluent Gross	<.01	mg/L
L0005126	03/31/2016	001-Q	34320-1-0	Chrysene	Effluent Gross	<.01	mg/L
L0005126	12/31/2015	001-Q	34320-1-0	Chrysene	Effluent Gross	<.01	mg/L
L0005126	09/30/2015	001-Q	34320-1-0	Chrysene	Effluent Gross	< .01	mg/L
L0005126	06/30/2015	001-Q	34320-1-0	Chrysene	Effluent Gross	<.01	mg/L
IL0005126	03/31/2015	001-Q	34320-1-0	Chrysene	Effluent Gross	< .01	mg/L
L0005126	12/31/2014	001-Q	34320-1-0	Chrysene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34320-1-0	Chrysene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34320-1-0	Chrysene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34320-1-0	Chrysene	Effluent Gross	< .01	mg/L
L0005126	12/31/2018	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
iL0005126	09/30/2018	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
(L0005126	03/31/2014	001-Q	34336-1-0	Diethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	
IL0005126	06/30/2014	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross	< .01	mg/L
	03/31/2014	001-Q	34341-1-0	Dimethyl phthalate	Effluent Gross		mg/L
IL0005126						< .01	mg/L
IL0005126	12/31/2018	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L

L0005126	06/30/2018		1134346111019.	ReceivedziCler	THE MILE OF THE STATE OF THE ST		R 72 _{mg} ₄
.0005126	03/31/2018	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
0005126	12/31/2017	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
0005126	09/30/2017	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
.0005126	06/30/2017	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
.0005126	03/31/2017	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
.0005126	12/31/2016	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
.0005126	09/30/2016	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
.0005126	06/30/2016	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
L0005126	03/31/2016	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
L0005126	12/31/2015	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
.0005126	09/30/2015	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
.0005126	06/30/2015	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
.0005126	03/31/2015	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
.0005126	12/31/2014	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
.0005126	09/30/2014	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
.0005126	06/30/2014	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
.0005126	03/31/2014	001-Q	34346-1-0	1,2-Diphenylhydrazine	Effluent Gross	< .01	mg/L
0005126	12/31/2018	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
L0005126	09/30/2018	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	<.0001	mg/L
.0005126	06/30/2018	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
L0005126	03/31/2018	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
L0005126	12/31/2017	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
L0005126	09/30/2017	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
.0005126	06/30/2017	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
0005126	03/31/2017	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
.0005126	12/31/2016	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
L0005126	09/30/2016	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
L0005126	06/30/2016	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
.0005126	03/31/2016	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	<.0001	mg/L
L0005126	12/31/2015	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
L0005126	09/30/2015	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
L0005126	06/30/2015	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
L0005126	03/31/2015	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
L0005126	12/31/2014	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
L0005126	09/30/2014	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
L0005126	06/30/2014	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .001	mg/L
L0005126	03/31/2014	001-Q	34351-1-0	Endosulfan sulfate	Effluent Gross	< .0001	mg/L
L0005126	12/31/2018	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	09/30/2018	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	06/30/2018	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	03/31/2018	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	12/31/2017	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	09/30/2017	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	06/30/2017	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	03/31/2017	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	12/31/2016	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	09/30/2016	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	06/30/2016	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	03/31/2016	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	12/31/2015	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	09/30/2015	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
IL0005126	06/30/2015	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	03/31/2015	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	12/31/2014	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L

L0005126	09/30/2014				erk's office 05/20		R 73 ^{mg/L}
L0005126	06/30/2014	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	<.001	mg/L
L0005126	03/31/2014	001-Q	34356-1-0	.betaEndosulfan	Effluent Gross	< .0001	mg/L
L0005126	12/31/2018	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	09/30/2018	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	06/30/2018	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	03/31/2018	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	12/31/2017	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	09/30/2017	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	06/30/2017	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	03/31/2017	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	12/31/2016	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	09/30/2016	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	06/30/2016	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	03/31/2016	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	12/31/2015	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	09/30/2015	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	06/30/2015	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	03/31/2015	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	12/31/2014	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	09/30/2014	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	06/30/2014	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	34361-1-0	.alphaEndosulfan	Effluent Gross	< .00005	mg/L
IL0005126	12/31/2018	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	09/30/2018	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	06/30/2018	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	03/31/2018	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	12/31/2017	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	09/30/2017	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	06/30/2017	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	03/31/2017	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	12/31/2016	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
iL0005126	09/30/2016	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	06/30/2016	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	03/31/2016	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	12/31/2015	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
1L0005126	09/30/2015	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	06/30/2015	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	03/31/2015	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	12/31/2014	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	09/30/2014	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	06/30/2014	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .001	mg/L
IL0005126	03/31/2014	001-Q	34366-1-0	Endrin aldehyde	Effluent Gross	< .0001	mg/L
IL0005126	12/31/2018	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	
	12/31/2016	001-Q	34371-1-0		Effluent Gross	< .005	mg/L
IL0005126	1			Ethylbenzene			mg/L
IL0005126	09/30/2016	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L

H 0005400				Received, Clerk's			R 74mg/L
L0005126	09/30/2015	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< . 005	mg/L
IL0005126	03/31/2015	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
iL0005126	09/30/2018	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	901-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
			34376-1-0	Fluoranthene	Effluent Gross	< .01	
IL0005126	06/30/2014	001-Q					mg/L
IL0005126	03/31/2014	001-Q	34376-1-0	Fluoranthene	Effluent Gross	< .01	mg/L
IL0005126		001-Q	34381-1-0	Fluorene	Effluent Gross	<:.01	mg/L
IL0005126	09/30/2018	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/l
IL0005126	03/31/2014	001-Q	34381-1-0	Fluorene	Effluent Gross	< .01	mg/t
IL0005126	12/31/2018	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
!L0005126	09/30/2017	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/l
120005120		001-Q	34386-1-0	Hexachiorocyclopentadiene	Effluent Gross	< .01	mg/L

IL0005126	03/31/2017			Received; Cherk			R 75mg/L
IL0005126	12/31/2016	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34386-1-0	Hexachlorocyclopentadiene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
iL0005126	06/30/2018	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
fL0005126	03/31/2016	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2015	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	03/31/2015	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	34396-1-0	Hexachloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	<.01	mg/L
IL0005126	09/30/2018	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	
IL0005126	12/31/2014	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene			mg/L
	06/30/2014	001-Q			Effluent Gross	< .01	mg/L
IL0005126			34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34403-1-0	Indeno[1,2,3-cd]pyrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34408-1-0	Isophorone	Effluent Gross	< .01	mg/L

L0005126	06/30/2018		134408111019	isopherene Cu, Cit	erk's Office 05/20	/2020 < .01 F	₹76 _{mg/]₄}
L0005126	03/31/2018	001-Q	34408-1-0	Isophorone	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	34408-1-0	Isophorone	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	34408-1-0	Isophorone	Effluent Gross	< .01	mg/L
L0005126	06/30/2017	001-Q	34408-1-0	Isophorone	Effluent Gross	<.01	mg/L
L0005126	03/31/2017	001-Q	34408-1-0	Isophorone	Effluent Gross	<.01	mg/L
L0005126	12/31/2016	001-Q	34408-1-0	Isophorone	Effluent Gross	<.01	mg/L
L0005126	09/30/2016	001-Q	34408-1-0	Isophorone	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34408-1-0	Isophorone	Effluent Gross	<.01	mg/L
L0005126	03/31/2016	001-Q	34408-1-0	Isophorone	Effluent Gross	< .01	mg/L
L0005126	12/31/2015	001-Q	34408-1-0	Isophorone	Effluent Gross	<.01	mg/L
IL0005126	09/30/2015	001-Q	34408-1-0	Isophorone	Effluent Gross	<.01	mg/L
IL0005126	06/30/2015	001-Q	34408-1-0	Isophorone	Effluent Gross	<.01	mg/L
IL0005126	03/31/2015	001-Q	34408-1-0	Isophorone	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34408-1-0	Isophorone	Effluent Gross	<.01	mg/L
IL0005126	09/30/2014	001-Q	34408-1-0	Isophorone	Effluent Gross	<.01	mg/L
IL0005126	06/30/2014	001-Q	34408-1-0	Isophorone	Effluent Gross	<.01	mg/L
IL0005126	03/31/2014	001-Q	34408-1-0	Isophorone	Effluent Gross	<.01	mg/L
IL0005126	12/31/2018	001-Q	34413-1-0	Methyl bromide	Effluent Gross	< .005	
120003120	12/3//2010	001-Q	J-1-U	[Bromomethane]	Lindelit Gioss	000.	mg/L
IL0005126	09/30/2018	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	03/31/2016	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	<.005	mg/L
IL0005126	09/30/2015	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	03/31/2015	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	<.005	mg/L
IL0005126	09/30/2014	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
1L0005126	06/30/2014	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	001-Q	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
10005126	12/31/2017	001-Q	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L

IL000 <u>5</u> 126	09/30/2017	Electron	i ʊ⁴F iling:	Regeived, Clerk [Chloromethane]	's Office 05/20/20)20 < .01	R 77 ^{mg/L}
L0005126	06/30/2017	001-Q	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126 .	09/30/2016	001-Q	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34418-1-0	Methyl chloride	Effluent Gross	<.01	mg/L
IL0005126	12/31/2015	001-Q	34418-1-0	[Chloromethane] Methyl chloride	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34418-1-0	[Chloromethane] Methyl chloride	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34418-1-0	[Chloromethane] Methyl chloride	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34418-1-0	[Chloromethane] Methyl chloride	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34418-1-0	[Chloromethane] Methyl chloride	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34418-1-0	[Chloromethane] Methyl chloride	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34418-1-0	[Chloromethane] Methyl chloride	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34418-1-0	[Chloromethane] Methyl chloride	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34423-1-0	[Chloromethane] Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	34423-1-0	Methylene chloride	Effluent Gross	.0071	mg/L
IL0005126	12/31/2017	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	· 001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
iL0005126	03/31/2017	001-Q	34423-1-0	Methylene chloride	Effluent Gross	.0078	mg/l
IL0005126	12/31/2016	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/l
IL0005126	03/31/2016	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	09/30/2015	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	03/31/2015	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	001-Q	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	34423-1-0	Methylene chloride	Effluent Gross	.009	mg/L
IL0005126	12/31/2018	001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	< .01	-
	12/31/2016	001-Q 001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	< .01	mg/L
IL0005126							mg/L
IL0005126	09/30/2016	001-Q 001-Q	34428-1-0 34428-1-0	N-Nitrosodi-N-propylamine N-Nitrosodi-N-propylamine	Effluent Gross Effluent Gross	< .01	mg/L
IL0005126						< .01	mg/L
IL0005126	03/31/2016	001-Q 001-Q	34428-1-0 34428-1-0	N-Nitrosodi-N-propylamine N-Nitrosodi-N-propylamine	Effluent Gross Effluent Gross	< .01	mg/L

IL0005126	09/30/2015			Received			R 78 _{mg} /₄
L0005126	06/30/2015	001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	< .01	mg/L
L0005126	03/31/2015	001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	<.01	mg/L
L0005126	12/31/2014	001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	<.01	mg/L
L0005126	09/30/2014	001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	<.01	mg/L
L0005126	06/30/2014	001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	< .01	mg/L
L0005126	03/31/2014	001-Q	34428-1-0	N-Nitrosodi-N-propylamine	Effluent Gross	< .01	mg/L
L0005126	12/31/2018	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
L0005126	09/30/2018	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
L0005126	06/30/2018	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
L0005126	03/31/2018	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	<.01	mg/L
L0005126	03/31/2017	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	<.01	mg/L
IL0005126	12/31/2016	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	<.01	mg/L
IL0005126	09/30/2016	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	<.01	mg/L
L0005126	06/30/2016	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	<.01	mg/L
L0005126	03/31/2016	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
L0005126	12/31/2014	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34433-1-0	N-Nitrosodiphenylamine	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	<.01	mg/L
IL0005126	09/30/2018	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	<.01	mg/L
£0005126	03/31/2018	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	. mg/L
IL0005126	09/30/2015	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34438-1-0	N-Nitrosodimethylamine [NDMA]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34438-1-0	N-Nitrosodimethÿlamine [NDMA]	Effluent Gross	< .01	mg/L

L0005126	03/31/2014			[NDMA]	's Office 05/20/2020) < .01	R 79 _{mg/L}
L0005126	12/31/2018	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
L0005126	09/30/2018	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
L0005126	06/30/2018	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
L0005126	03/31/2018	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
L0005126	06/30/2017	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
L0005126	03/31/2017	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
L0005126	12/31/2016	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
L0005126	09/30/2016	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
L0005126	06/30/2016	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
L0005126	09/30/2015	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
L0005126	06/30/2015	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
L0005126	03/31/2015	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
L0005126	09/30/2014	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34447-1-0	Nitrobenzene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	09/30/2018	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	06/30/2018	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	03/31/2018	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
L0005126	12/31/2017	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	09/30/2017	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	06/30/2017	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	03/31/2017	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	12/31/2016	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	09/30/2016	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	06/30/2016	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	03/31/2016	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	12/31/2015	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	09/30/2015	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	06/30/2015	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	03/31/2015	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	12/31/2014	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	09/30/2014	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	06/30/2014	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	03/31/2014	001-Q	34452-1-0	para-Chloro-meta-cresol	Effluent Gross	< .02	mg/L
IL0005126	12/31/2018	001-Q	34461-1-0	Phenanthrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34461-1-0	Phenanthrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34461-1-0	Phenanthrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34461-1-0	Phenanthrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34461-1-0	Phenanthrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34461-1-0	Phenanthrene	Effluent Gross	< .01	mg/L
fL0005126	06/30/2017	001-Q	34461-1-0	Phenanthrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34461-1-0	Phenanthrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34461-1-0	Phenanthrene	Effluent Gross	<.01	mg/L
IL0005126	09/30/2016	001-Q	34461-1-0	Phenanthrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34461-1-0	Phenanthrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34461-1-0	Phenanthrene	Effluent Gross	<.01	mg/L
1LUUU5120	12/3/1/2013	001 Q	34431-4-0	Charanthrana	Effluent Cross	< 01	ma/l
IL0005126	09/30/2015	001-Q	34461-1-0	Phenanthrene	Effluent Gross	< .01	mg/L

IL0005126	06/30/2015				rk's Office 05/20/		₹ 80 _{mg/}
IL0005126	03/31/2015	001-Q	34461-1-0	Phenanthrene	Effluent Gross	<.01	mg/L
L0005126	12/31/2014	001-Q	34461-1-0	Phenanthrene	Effluent Gross	<.01	mg/L
IL0005126	09/30/2014	001-Q	34461-1-0	Phenanthrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34461-1-0	Phenanthrene	Effluent Gross	<.01	mg/L
IL0005126	03/31/2014	001-Q	34461-1-0	Phenanthrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34469-1-0	Pyrene	Effluent Gross	<.01	mg/L
IL0005126	06/30/2016	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34469-1-0	Pyrene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	.0055	mg/L
IL0005126	12/31/2016	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2016	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2015	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2015	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	.0095	mg/L
IL0005126	12/31/2014	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	34475-1-0	Tetrachloroethylene	Effluent Gross	.0261	mg/L
IL0005126	12/31/2018	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L

L0005126	09/30/2016				k's:@ffice:05/20/		R 81mg/L
_0005126	06/30/2016	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	<.005	mg/L
L0005126	03/31/2016	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	<.005	mg/L
L0005126	09/30/2015	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	<.005	mg/L
IL0005126	06/30/2015	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	03/31/2015	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	<.005	mg/L
L0005126	03/31/2014	001-Q	34496-1-0	1,1-Dichloroethane	Effluent Gross	.0078	mg/L
IL0005126	12/31/2018	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
1L0005126	09/30/2018	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	-
IL0005126	12/31/2016	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	34501-1-0	1,1-Dichloroethylene			mg/L
		001-Q	34501-1-0		Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q 001-Q		1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2016		34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2015	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2015	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	03/31/2016	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2015	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	03/31/2015	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	
IL0005126	12/31/2014	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross		mg/L
		001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014					< .005	mg/L
IL0005126	06/30/2014	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L

L0005126				Received, Clerk			R 82 _{mg} ₄
L0005126	09/30/2017	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	03/31/2017	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	09/30/2016	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	03/31/2016	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	09/30/2015	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	03/31/2015	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	09/30/2014	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	03/31/2014	001-Q	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	09/30/2018	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	03/31/2018	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	09/30/2017	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	03/31/2017	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	rng/L
L0005126	12/31/2016	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	09/30/2016	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	03/31/2016	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	09/30/2015	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	03/31/2015	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	03/31/2014	001-Q	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	001-Q	34521-1-0	Benzo[ghi]perylene	Effluent Gross	< .01	mg/L
L0005126	09/30/2018	001-Q	34521-1-0	Benzo[ghi]perylene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34521-1-0	Benzo(ghi)perylene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34521-1-0	Benzo[ghi]perylene	Effluent Gross	< .01	mg/L
L0005126		001-Q	34521-1-0	Benzo[ghi]perylene	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	34521-1-0	Benzo(ghi)perylene	Effluent Gross	< .01	mg/L
L0005126	06/30/2017	001-Q	34521-1-0	Benzo[ghi]perylene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34521-1-0	Benzo[ghi]perylene	Effluent Gross	< .01	mg/L
L0005126	12/31/2016	001-Q	34521-1-0	Benzo[ghi]perylene	Effluent Gross	< .01	mg/L
L0005126	09/30/2016	001-Q	34521-1-0	Benzo[ghi]perylene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34521-1-0	Benzo[ghi]perylene	Effluent Gross	< .01	mg/L
L0005126	03/31/2016	001-Q	34521-1-0	Benzo[ghi]perylene	Effluent Gross	< .01	
IL0005126	12/31/2015	001-Q	34521-1-0	Benzo[ghi]perylene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34521-1-0	Benzo[ghi]perylene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34521-1-0	Benzo[ghi]perylene	Effluent Gross	< .01	mg/L
	03/31/2015				Effluent Gross		mg/L
IL0005126		001-Q	34521-1-0	Benzo(ghi)perylene		< .01	mg/L
IL0005126	12/31/2014	001-Q	34521-1-0	Benzo(ghi]perylene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q 001-Q	34521-1-0 34521-1-0	Benzo[ghi]perylene Benzo[ghi]perylene	Effluent Gross	< .01	mg/L

L0005126	03/31/2014			Received, Clerk			83mg/L
L0005126	12/31/2018	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
L0005126	09/30/2018	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
L0005126	06/30/2018	001-Q	34526-1-0	Benzo(a)anthracene	Effluent Gross	< .01	mg/L
L0005126	03/31/2018	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
L0005126	06/30/2016	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	<.01	mg/L
IL0005126	12/31/2015	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
L0005126	06/30/2015	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34526-1-0	Benzo[a]anthracene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q 001-Q	34531-1-0 34531-1-0	1,2-Dichloroethane, total weight 1,2-Dichloroethane, total	Effluent Gross	< .005 < .005	mg/L
IL0005126	09/30/2017	001-Q	34531-1-0	weight 1,2-Dichloroethane, total	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	34531-1-0	weight 1,2-Dichloroethane, total	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	34531-1-0	weight 1,2-Dichloroethane, total	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	001-Q	34531-1-0	weight 1,2-Dichloroethane, total	Effluent Gross	< .005	mg/L
	1			weight			
IL0005126	09/30/2016	001-Q	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	03/31/2016	001-Q	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	001-Q	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	09/30/2015	001-Q	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	03/31/2015	001-Q	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	001-Q	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	001-Q	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	.0113	mg/L
IL0005126	12/31/2018	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	34536-T-U	T, Z-Dichloropenzene	Emuent Gross	~ .005	THYL

L0005126	12/31/2017			Received Clerk			R 84 _{mg/L}
L0005126	09/30/2017	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .O05	mg/L
L0005126	03/31/2017	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	09/30/2016	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	03/31/2016	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .O05	mg/L
L0005126	12/31/2015	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	09/30/2015	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	03/31/2015	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	09/30/2014	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	03/31/2014	001-Q	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	09/30/2018	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	03/31/2018	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	09/30/2017	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	<.005	mg/L
L0005126	06/30/2017	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	03/31/2017	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	09/30/2016	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	001-Q	34541-1-0	1,2-Dichtoropropane	Effluent Gross	< .005	mg/L
L0005126	03/31/2016	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	09/30/2015	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	03/31/2015	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	09/30/2014	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	03/31/2014	001-Q	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
IL0005126	09/30/2018	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
L0005126	06/30/2018	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
L0005126	03/31/2018	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
L0005126	12/31/2017	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
L0005126	09/30/2017	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
L0005126	06/30/2017	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
L0005126	03/31/2017	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
L0005126	12/31/2016	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
L0005126	09/30/2016	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
L0005126	06/30/2016	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
L0005126	03/31/2016	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
IL0005126	12/31/2015	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
L0005126	09/30/2015	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
IL0005126	06/30/2015	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
IL0005126	03/31/2015	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
IL0005126	12/31/2014	001-Q	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
		001-Q 001-Q		trans-1,2-Dichloroethylene	Effluent Gross	< .001	
IL0005126	09/30/2014	001-Q	34546-1-0 34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	100.	mg/L

IL0005126	03/31/2014				k's:@ffice:05/20/202	J < .001	R 85mg/L
L0005126	12/31/2018	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
L0005126	03/31/2017	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34551-1-0.	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34551-1-0	1,2,4-Trichlorobenzene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	<01	mg/L
IL0005126	09/30/2016	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	<.1	mg/L
IL0005126	09/30/2015	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	<.01	mg/L
IL0005126	03/31/2014	001-Q	34556-1-0	Dibenz[a,h]anthracene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2016	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	
	12/31/2015	001-Q 001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2015	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	<.005	mg/L

IL0005126	06/30/2015			Received Clerk			R 86mg/L
L0005126	03/31/2015	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	09/30/2014	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	03/31/2014	001-Q	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2016	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2015	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
iL0005126	06/30/2015	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	03/31/2015	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	<.01	mg/L
IL0005126	09/30/2017	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	<.01	mg/L
IL0005126	06/30/2017	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34576-1-0	2-Chloroethyl vinyl ether,	Effluent Gross	< .01	mg/L

L0005126	03/31/2014		183516HHNG:	[mixed]	's:-Office 05/20/20	20 < .01	R 87mg/L
L0005126	12/31/2018	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	09/30/2018	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	06/30/2018	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	03/31/2018	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	06/30/2017	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	03/31/2017	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	12/31/2016	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	09/30/2016	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	06/30/2016	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	03/31/2016	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	12/31/2015	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	09/30/2015	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	06/30/2015	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	03/31/2015	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	12/31/2014	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	09/30/2014	001-Q	34581-1-0	2-Chioronaphthalene	Effluent Gross	< .01	mg/L
L0005126	06/30/2014	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	. 03/31/2014	001-Q	34581-1-0	2-Chloronaphthalene	Effluent Gross	< .01	mg/L
L0005126	12/31/2018	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
L0005126	09/30/2018	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
L0005126	06/30/2018	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
L0005126	03/31/2018	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
L0005126	06/30/2017	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
L0005126	06/30/2016	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
L0005126	03/31/2016	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
L0005126	03/31/2014	001-Q	34586-1-0	2-Chlorophenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
L0005126	09/30/2018	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	· < .01	mg/L
IL0005126	03/31/2018	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
L0005126	12/31/2016	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	. < .01	mg/L
II 000E49E	10/21/2015	001-0	34591 1-0	2-Nitrophenol	Effluent Gross	< 01	ma/L
IL0005126	09/30/2015	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L

L0005126	06/30/2015			E-Mirisphenicu, Cic	erk's Qffice 05/20	72020 < .01	R 88mg/4
L0005126	03/31/2015	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
.0005126	12/31/2014	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
.0005126	09/30/2014	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
.0005126	06/30/2014	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
.0005126	03/31/2014	001-Q	34591-1-0	2-Nitrophenol	Effluent Gross	< .01	mg/L
.0005126	12/31/2018	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
.0005126	09/30/2018	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
.0005126	06/30/2018	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
_0005126	03/31/2018	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
_0005126	12/31/2017	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
.0005126	06/30/2017	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
_0005126	03/31/2017	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
.0005126	12/31/2016	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
.0005126	09/30/2016	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
L0005126	06/30/2016	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
.0005126	03/31/2016	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
.0005126	12/31/2015	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	<.1	mg/L
_0005126	09/30/2015	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
_0005126	06/30/2015	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
L0005126	03/31/2015	, 001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
L0005126	12/31/2014	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
_0005126	09/30/2014	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
_0005126	06/30/2014	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
_0005126	03/31/2014	001-Q	34596-1-0	Di-n-octyl phthalate	Effluent Gross	< .01	mg/L
_0005126	12/31/2018	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
_0005126	09/30/2018	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
_0005126	06/30/2018	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	03/31/2018	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	06/30/2017	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	03/31/2017	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	12/31/2016	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	09/30/2016	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	06/30/2016	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	03/31/2016	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	12/31/2015	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	09/30/2015	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	06/30/2015	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	03/31/2015	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	12/31/2014	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	09/30/2014	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	06/30/2014	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	03/31/2014	001-Q	34601-1-0	2,4-Dichlorophenol	Effluent Gross	< .01	mg/L
L0005126	12/31/2018	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
L0005126	09/30/2018	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
L0005126	06/30/2018	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
L0005126	03/31/2018	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
L0005126	06/30/2017	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
L0005126	03/31/2017	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L

IL0005126	09/30/2016				rk's @ffice 05/20		R 89ng/L
L0005126	06/30/2016	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
L0005126	03/31/2016	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
L0005126	12/31/2015	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34606-1-0	2,4-Dimethylphenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34611-1-0	2,4-Dinitrotoluene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
(L0005126	06/30/2015	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
iL0005126	09/30/2014	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	mg/L
	03/31/2014	001-Q	34616-1-0	2,4-Dinitrophenol	Effluent Gross	< .01	-
IL0005126			34621-1-0				mg/L
IL0005126	12/31/2018	001-Q		2,4,6-Trichlorophenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	< .01	mg/L

IL0005126	12/31/2017			j: Received, Cle	II EmisentiGress UJ/ZU	<i>11</i> ∠∪∠∪ <.01	R 90 _{ng4}
L0005126	09/30/2017	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	< .01	mg/L
L0005126	06/30/2017	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	< .01	- mg/L
L0005126	03/31/2017	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	<.01	mg/L
L0005126	12/31/2016	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	<.01	mg/L
L0005126	09/30/2016	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	<.01	mg/L
L0005126	06/30/2016	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	<.01	mg/L
L0005126	03/31/2016	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	< .01	mg/L
L0005126	12/31/2015	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	<.01	mg/L
L0005126	09/30/2015	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	<.01	mg/L
L0005126	06/30/2015	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	< .01	mg/L
L0005126	03/31/2015	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	< .01	mg/L
L0005126	12/31/2014	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	<.01	mg/L
L0005126	09/30/2014	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	<.01	mg/L
L0005126	06/30/2014	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	< .01	mg/L
L0005126	03/31/2014	001-Q	34621-1-0	2,4,6-Trichlorophenol	Effluent Gross	< .01	mg/L
L0005126	12/31/2018	001-Q	34626-1-0	2.6-Dinitrotoluene	Effluent Gross	< .01	mg/L
L0005126	09/30/2018	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	<.01	mg/L
L0005126	06/30/2018	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	<.01	mg/L
L0005126	03/31/2018	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	<.01	mg/L
L0005126	12/31/2017	001-Q	34626-1-0	2.6-Dinitrotoluene	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	<.01	mg/L
L0005126	06/30/2017	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	<.01	mg/L
L0005126	03/31/2017	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	< .01	mg/L
L0005126	12/31/2016	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	< .01	mg/L
L0005126	09/30/2016	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	< .01	mg/L
L0005126	06/30/2016	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	< .01	mg/L
L0005126	03/31/2016	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	< .01	mg/L
L0005126	12/31/2015	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	< .01	
IL0005126	09/30/2015	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	<.01	mg/L
IL0005126	06/30/2015	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	<.01	mg/L
IL0005126	03/31/2015	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	<.01	mg/L
	12/31/2014	001-Q	34626-1-0	2,6-Dinitrotoluene	Effluent Gross	< .01	mg/L
L0005126			34626-1-0			< .01	mg/L
IL0005126	09/30/2014	001-Q 001-Q	34626-1-0	2,6-Dinitrotoluene 2,6-Dinitrotoluene	Effluent Gross Effluent Gross	< .01	mg/L
IL0005126	03/31/2014		34626-1-0		Effluent Gross	< .01	mg/L
IL0005126		001-Q		2,6-Dinitrotoluene			mg/L
IL0005126	12/31/2018	001-Q	34631-1-0 34631-1-0	3,3'-Dichlorobenzidine 3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	09/30/2018	001-Q	34631-1-0			< .02	mg/L
1L0005126	06/30/2018	001-Q		3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	03/31/2018	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	12/31/2017	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	09/30/2017	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	06/30/2017	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	03/31/2017	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	12/31/2016	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	09/30/2016	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	06/30/2016	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	03/31/2016	001-Q	34631-1-0	3,3'-Dichtorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	12/31/2015	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	09/30/2015	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	06/30/2015	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	03/31/2015	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	12/31/2014	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	09/30/2014	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L
IL0005126	06/30/2014	001-Q	34631-1-0	3,3'-Dichlorobenzidine	Effluent Gross	< .02	mg/L

L0005126	03/31/2014		ieriling:				R 91mg/L
IL0005126	12/31/2018	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
iL0005126	09/30/2017	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
iL0005126	06/30/2015	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
L0005126	09/30/2014	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34636-1-0	4-Bromophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
L0005126	03/31/2018	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
L0005126	12/31/2015	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
L0005126	03/31/2015	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
L0005126	06/30/2014	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34641-1-0	4-Chlorophenyl phenyl ether	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
L0005126	09/30/2018	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	, mg/L
IL0005126	06/30/2018	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
IL0005126	03/31/2018	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
IL0005126	12/31/2017	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
IL0005126	09/30/2017	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
IL0005126	06/30/2017	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
IL0005126	03/31/2017	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
L0005126	12/31/2016	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
L0005126	09/30/2016	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	
IL0005126	06/30/2016	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
IL0005126	03/31/2016	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
IL0005126	12/31/2015	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross		mg/L
1.0005126	09/30/2015	001-Q	34040-1-0	4-Nitropnenoi	Effluent Gross	< .05	mg/L

L0005126	06/30/2015			Raceixed, Cle	TIT PEINGENT GROSS 9 07 2 07	/2020 < .05	R 92 _{mg} /⊥
L0005126	03/31/2015	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
L0005126	12/31/2014	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
0005126	09/30/2014	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
.0005126	06/30/2014	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
.0005126	03/31/2014	001-Q	34646-1-0	4-Nitrophenol	Effluent Gross	< .05	mg/L
.0005126	12/31/2018	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
.0005126	09/30/2018	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
.0005126	06/30/2018	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
_0005126	03/31/2018	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
0005126	12/31/2017	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
L0005126	09/30/2017	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
.0005126	06/30/2017	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
-0005126	03/31/2017	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
.0005126	12/31/2016	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
L0005126	09/30/2016	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
_0005126	06/30/2016	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
_0005126	03/31/2016	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
_0005126	12/31/2015	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
L0005126	09/30/2015	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
L0005126	06/30/2015	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
L0005126	03/31/2015	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
L0005126	· 12/31/2014	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
L0005126	09/30/2014	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
L0005126	06/30/2014	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
L0005126	03/31/2014	001-Q	34657-1-0	4,6-Dinitro-o-cresol	Effluent Gross	< .05	mg/L
L0005126	12/31/2018	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
_0005126	09/30/2018	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	06/30/2018	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	03/31/2018	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	12/31/2017	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	09/30/2017	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	06/30/2017	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	03/31/2017	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	12/31/2016	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	09/30/2016	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	06/30/2016	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	03/31/2016	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	12/31/2015	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	09/30/2015	001-Q	34671-1-0	PCB-1016	Effluent Gross .	< .0005	mg/L
L0005126	06/30/2015	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	03/31/2015	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	12/31/2014	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	09/30/2014	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	06/30/2014	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	03/31/2014	001-Q	34671-1-0	PCB-1016	Effluent Gross	< .0005	mg/L
L0005126	12/31/2018	001-Q	34694-1-0	Phenol	Effluent Gross	< .01	mg/L
L0005126	09/30/2018	001-Q	34694-1-0	Phenol	Effluent Gross	< .01	mg/L
L0005126	06/30/2018	001-Q	34694-1-0	Phenol	Effluent Gross	< .01	mg/L
L0005126	03/31/2018	001-Q	34694-1-0	Phenol	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	34694-1-0	Phenol	Effluent Gross	< .01	
L0005126	09/30/2017	001-Q	34694-1-0	Phenol	Effluent Gross	< .01	mg/L
L0005126	06/30/2017	001-Q 001-Q	34694-1-0	Phenol	Effluent Gross	< .01	
							mg/L
IL0005126	03/31/2017	001-Q	34694-1-0	Phenol	Effluent Gross	< .01	mg/L

L0005126 L0005126	09/30/2016 06/30/2016	001-Q	₹6 Piling:	Received, Clerk	Effluent Gross	2020 < .01	R 93 ^{mg/L}
L0005126	03/31/2016	001-Q	34694-1-0	Phenol	Effluent Gross	<.01	mg/L
	12/31/2015	001-Q	34694-1-0			N	mg/L
L0005126				Phenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34694-1-0	Phenol	Effluent Gross	.019	mg/L
IL0005126	06/30/2015	001-Q	34694-1-0	Phenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34694-1-0	Phenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34694-1-0	Phenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34694-1-0	Phenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34694-1-0	Phenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34694-1-0	Phenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	34696-1-0	Naphthalene	Effluent Gross	< .01	
IL0005126	12/31/2018	001-Q		Pentachlorophenol	10	< .01	mg/L
			39032-1-0		Effluent Gross		mg/L
IL0005126	09/30/2018	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
'IL0005126	12/31/2015	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	39032-1-0	Pentachiorophenol	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	39032-1-0	Pentachiorophenol	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	39032-1-0	Pentachlorophenol	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IEUUUSTZO	U0/JU/2U 10	001-Q	39100-1-0	Digz-ethymexyii phunalate	Effluent Gross	~:.003	mg/£

IL0005126	03/31/2018	Electron		[DEHP]	's Office 05/20/20	20 < .005	R 94mg/L
IL0005126	12/31/2017	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	03/31/2016	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate	Effluent Gross	< .005	mg/L
IL0005126	09/30/2015	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	03/31/2015	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	39100-1-0	Di[2-ethylhexyl] phthalate [DEHP]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
L0005126	09/30/2018	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	
IL0005126		001-Q	39110-1-0		Effluent Gross		mg/L
	12/31/2016			Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2016	001-Q	39110-1-0	Di-n-butyl phthalate		< .01	mg/L
(L0005126	06/30/2016	001-Q	39110-1-0	Di-n-butyl-phthalate	Effluent Gross	<01-	mg/L
IL0005126	03/31/2016	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	. mg/L
IL0005126	12/31/2015	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	<.1	mg/L
IL0005126	09/30/2015	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	39110-1-0	Di-n-butyl phthalate	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	39120-1-0	Benzidine	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	39120-1-0	Benzidine	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	39120-1-0	Benzidine	Effluent Gross	< .01	mg/L
IL0005126	03/31/2018	001-Q	39120-1-0	Benzidine	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	001-Q	39120-1-0	Benzidine	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	39120-1-0	Benzidine	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	39120-1-0	Benzidine	Effluent Gross	< .01	mg/L
IL0005126	03/31/2017	001-Q	39120-1-0	Benzidine	Effluent Gross	< .01	mg/L
# 0005126	12/31/2016	001-Q	39120-1-0	Renzidine	Effluent Gross-	< 01	mg/l
IL0005126	09/30/2016	001-Q	39120-1-0	Benzidine	Effluent Gross	< .01	mg/L

IL0005 <u>1</u> 26 IL0005126	06/30/2016 03/31/2016	Electron 001-Q	i ³⁹¹ P iling:	Recidio Ved, Clerk	Effluent Gross		R 95 ^{mg/L}
L0005126	12/31/2015	001-Q 001-Q	39120-1-0	Benzidine		<.01	mg/L
					Effluent Gross	<.01	mg/L
L0005126	09/30/2015	001-Q	39120-1-0	Benzidine	Effluent Gross	< .01	mg/L
L0005126	06/30/2015	001-Q	39120-1-0	Benzidine	Effluent Gross	< .01	mg/L
L0005126	03/31/2015	001-Q	39120-1-0	Benzidine	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	39120-1-0	Benzidine	Effluent Gross	<.01	mg/L
IL0005126	09/30/2014	001-Q	39120-1-0	Benzidine	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	39120-1-0	Benzidine	Effluent Gross	<.01	mg/L
IL0005126	03/31/2014	001-Q	39120-1-0	Benzidine	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	.0049	mg/L
IL0005126	09/30/2018	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	06/30/2018	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	03/31/2018	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	.0036	mg/L
L0005126	12/31/2017	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
L0005126	09/30/2017	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
!L0005126	06/30/2017	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	03/31/2017	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	.0069	mg/L
IL0005126	12/31/2016	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	.0041	mg/L
IL0005126	09/30/2016	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	06/30/2016	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	03/31/2016	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	.0044	mg/L
IL0005126	12/31/2015	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	.0028	mg/L
IL0005126	09/30/2015	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	06/30/2015	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	.0034	mg/L
IL0005126	03/31/2015	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	12/31/2014	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	.0028	mg/L
IL0005126	09/30/2014	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	06/30/2014	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	03/31/2014	001-Q	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	12/31/2018	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2018	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2017	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2016	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2015	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2015	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	.0067	mg/L
IL0005126	12/31/2014	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2014	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	39180-1-0	Trichloroethylene	Effluent Gross	.0192	mg/L
IL0005126	12/31/2018	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
IL0005126	09/30/2018	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	
IL0005126	06/30/2018	001-Q	39300-1-0	4,4'-DDT	Effluent Gross		mg/L
IL0005126	03/31/2018	001-Q 001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
120000120	12/31/2017	001-Q	39300-1-0	4,4'-007	Linuent Gloss	< .0001	mg/L

L0005126	09/30/2017				erk's: @ffice: 05/20/		R 96mg/L
L0005126	06/30/2017	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
L0005126	03/31/2017	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
L0005126	12/31/2016	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
_0005126	09/30/2016	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
.0005126	06/30/2016	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
.0005126	03/31/2016	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
.0005126	12/31/2015	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
.0005126	09/30/2015	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
.0005126	06/30/2015	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
.0005126	03/31/2015	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
.0005126	12/31/2014	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
.0005126	09/30/2014	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
.0005126	06/30/2014	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
0005126	03/31/2014	001-Q	39300-1-0	4,4'-DDT	Effluent Gross	< .0001	mg/L
.0005126	12/31/2018	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
_0005126	09/30/2018	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
.0005126	06/30/2018	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
.0005126	03/31/2018	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
.0005126	12/31/2017	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
.0005126	09/30/2017	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
.0005126	06/30/2017	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
.0005126	03/31/2017	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
.0005126	12/31/2016	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
.0005126	09/30/2016	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
.0005126	06/30/2016	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	
.0005126	03/31/2016	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
.0005126	12/31/2015	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
			3				mg/L
_0005126	09/30/2015	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
_0005126	06/30/2015	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
_0005126	03/31/2015	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
L0005126	12/31/2014	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
L0005126	09/30/2014	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
L0005126	06/30/2014	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
L0005126	03/31/2014	001-Q	39310-1-0	4,4'-DDD	Effluent Gross	< .0001	mg/L
L0005126	12/31/2018	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
L0005126	09/30/2018	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
L0005126	06/30/2018	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
_0005126	03/31/2018	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
_0005126	12/31/2017	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
_0005126	09/30/2017	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
L0005126	06/30/2017	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
_0005126	03/31/2017	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
L0005126	12/31/2016	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
L0005126	09/30/2016	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
L0005126	06/30/2016	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
L0005126	03/31/2016	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
L0005126	12/31/2015	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
L0005126	09/30/2015	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
L0005126	06/30/2015	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
L0005126	03/31/2015	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
L0005126	12/31/2014	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
L0005126	09/30/2014	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
L0005126	06/30/2014	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	< .0001	mg/L
2000120	03/31/2014	001-Q	39320-1-0	4,4'-DDE	Effluent Gross	7.0001	mg/L

0005126	12/31/2018		39330-1-0	Aldrin	erk's file of file of 05/20, Effluent Gross	< .00005	₹ 97 ^{mg/L}
.0005126	09/30/2018	001-Q 001-Q	39330-1-0		Effluent Gross		mg/L
.0005126	06/30/2018			Aldrin		< .00005	mg/L
.0005126	03/31/2018	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
.0005126	12/31/2017	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
.0005126	09/30/2017	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
.0005126	06/30/2017	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
.0005126	03/31/2017	001-Q	39330-1-0	Aldrin	Effluent Gross	<.00005	mg/L
.0005126	12/31/2016	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
.0005126	09/30/2016	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
.0005126	06/30/2016	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
.0005126	03/31/2016	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
.0005126	12/31/2015	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
_0005126	09/30/2015	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
_0005126	06/30/2015	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
.0005126	03/31/2015	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
_0005126	12/31/2014	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
_0005126	09/30/2014	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
_0005126	06/30/2014	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
_0005126	03/31/2014	001-Q	39330-1-0	Aldrin	Effluent Gross	< .00005	mg/L
_0005126	12/31/2018	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
_0005126	09/30/2018	001-Q	39337-1-0	.alphaBHC	Effluent Gross	<.00005	mg/L
L0005126	06/30/2018	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	03/31/2018	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	12/31/2017	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
_0005126	09/30/2017	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	06/30/2017	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	03/31/2017	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	12/31/2016	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	09/30/2016	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	06/30/2016	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	03/31/2016	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	12/31/2015	001-Q	39337-1-0	.alphaBHC	Effluent Gross	<00005	mg/L
L0005126	09/30/2015	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	06/30/2015	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	03/31/2015	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	12/31/2014	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	09/30/2014	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	06/30/2014	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	03/31/2014	001-Q	39337-1-0	.alphaBHC	Effluent Gross	< .00005	mg/L
L0005126	12/31/2018	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	09/30/2018	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	06/30/2018	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	03/31/2018	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	12/31/2017	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	09/30/2017	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	06/30/2017	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	03/31/2017	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	12/31/2016	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	09/30/2016	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	06/30/2016	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	03/31/2016	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	12/31/2015	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	09/30/2015	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
LUUU5126	00730/2015	001-Q	39336-1-0	.betaBHC	EMDONT Gross	<.00005	mg/L

L0005126	03/31/2015			Received, Clerk			R 98mg/L
L0005126	12/31/2014	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	09/30/2014	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	06/30/2014	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	03/31/2014	001-Q	39338-1-0	.betaBHC	Effluent Gross	< .00005	mg/L
L0005126	12/31/2018	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	09/30/2018	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	06/30/2018	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	03/31/2018	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	12/31/2017	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	09/30/2017	001-Q	39344-1-0	.gammaBHC	Effluent Gross	<00005	mg/L
L0005126	06/30/2017	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	03/31/2017	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	12/31/2016	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	09/30/2016	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	06/30/2016	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	03/31/2016	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	12/31/2015	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	09/30/2015	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	06/30/2015	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	03/31/2015	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	12/31/2014	001-Q	39344-1-0	.gammaBHC	Effluent Gross	.00005	mg/L
L0005126	09/30/2014	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	06/30/2014	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	03/31/2014	001-Q	39344-1-0	.gammaBHC	Effluent Gross	< .00005	mg/L
L0005126	12/31/2018	001-Q	39350-1-0	Chlordane [tech mix. and metabolites]	Effluent Gross	< .0005	mg/L
L0005126	09/30/2018	001-Q	39350-1-0	Chlordane [tech mix. and metabolites]	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2018	001-Q	39350-1-0	Chlordane [tech mix. and metabolites]	Effluent Gross	< .0005	mg/L
L0005126	03/31/2018	001-Q	39350-1-0	Chlordane [tech mix. and metabolites]	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2017	001-Q	39350-1-0	Chlordane [tech mix. and metabolites]	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2017	001-Q 001-Q	39350-1-0 39350-1-0	Chlordane [tech mix. and metabolites] Chlordane [tech mix. and	Effluent Gross Effluent Gross	< .0005 < .0005	mg/L
IL0005126	03/31/2017	001-Q	39350-1-0	metabolites] Chlordane [tech mix- and	Effluent Gross	< .0005	mg/L
120000120	00/01/2017	50.4	55555	metabolites]	Z.N.OSIN O.OSO	10000	mg/L
IL0005126	12/31/2016	001-Q	39350-1-0	Chlordane [tech mix. and metabolites]	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2016	001-Q	39350-1-0	Chlordane [tech mix. and metabolites]	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2016	001-Q	39350-1-0 39350-1-0	Chlordane [tech mix. and metabolites]	Effluent Gross	< .0005 < .0005	mg/L
IL0005126	12/31/2015	001-Q 001-Q	39350-1-0	Chlordane [tech mix. and metabolites] Chlordane [tech mix. and	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2015	001-Q	39350-1-0	metabolites] Chlordane [tech mix. and	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2015	001-Q	39350-1-0	metabolites] Chlordane [tech mix. and	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2015	001-Q	39350-1-0	metabolites] Chlordane [tech mix. and	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2014	001-Q	39350-1-0	metabolites] Chlordane [tech mix. and	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2014	001-Q	39350-1-0	metabolites] Chlordane [tech mix. and	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2014	001-Q	39350-1-0	metabolites] Chlordane [tech mix. and	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2014	001-Q	39350-1-0	metabolites] Chlordane [tech mix. and	Effluent Gross	< .0005	ma/L

IL0005126					erk's=@#i ce =05/20/		R 99 mg/L
IL0005126	09/30/2018	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	06/30/2018	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	03/31/2018	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	12/31/2017	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	09/30/2017	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	06/30/2017	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	03/31/2017	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	12/31/2016	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	09/30/2016	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	06/30/2016	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	03/31/2016	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	12/31/2015	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	09/30/2015	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	06/30/2015	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	03/31/2015	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	12/31/2014	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	
IL0005126	09/30/2014	001-Q	39380-1-0	Dieldrin	Effluent Gross		mg/L
IL0005126	06/30/2014	001-Q	39380-1-0		Effluent Gross	< .0001	mg/L
				Dieldrin		< .0001	mg/L
IL0005126	03/31/2014	001-Q	39380-1-0	Dieldrin	Effluent Gross	< .0001	mg/L
IL0005126	12/31/2018	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	09/30/2018	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	06/30/2018	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	03/31/2018	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	12/31/2017	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	09/30/2017	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	06/30/2017	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	03/31/2017	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	12/31/2016	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	09/30/2016	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	06/30/2016	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	03/31/2016	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	12/31/2015	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
iL0005126	09/30/2015	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	06/30/2015	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	03/31/2015	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	12/31/2014	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	mg/L
IL0005126	09/30/2014	001-Q	39390-1-0	Endrin	Effluent Gross	< .0001	
IL0005126	06/30/2014	001-Q	39390-1-0	Endrin	Effluent Gross	<.0001	mg/L
IL0005126	03/31/2014	001-Q	39390-1-0	Endrin	Effluent Gross		mg/L
IL0005126	12/31/2018	001-Q	39400-1-0			< .0001	mg/L
				Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	09/30/2018	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	06/30/2018	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	03/31/2018	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	12/31/2017	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	09/30/2017	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	06/30/2017	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	03/31/2017	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	12/31/2016	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	09/30/2016	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	06/30/2016	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	03/31/2016	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	12/31/2015	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	09/30/2015	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	06/30/2015	001-Q	39400-1-0	Toxaphene	Effluent Gross	< 001	mg/L

L0005126	03/31/2015			Towarder VCU, CIE	erk's Office 05/20		R 100 _{ng/L}
L0005126	12/31/2014	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
L0005126	09/30/2014	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
L0005126	06/30/2014	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
L0005126	03/31/2014	001-Q	39400-1-0	Toxaphene	Effluent Gross	< .001	mg/L
IL0005126	12/31/2018	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
IL0005126	09/30/2018	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00 005	mg/L
L0005126	06/30/2018	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
IL0005126	03/31/2018	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
IL0005126	12/31/2017	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	09/30/2017	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	06/30/2017	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	03/31/2017	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	12/31/2016	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	09/30/2016	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	06/30/2016	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	03/31/2016	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	12/31/2015	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	09/30/2015	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	06/30/2015	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	03/31/2015	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	12/31/2014	001-Q	39410-1-0	Heptachior	Effluent Gross	< .00005	mg/L
L0005126	09/30/2014	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	06/30/2014	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	03/31/2014	001-Q	39410-1-0	Heptachlor	Effluent Gross	< .00005	mg/L
L0005126	12/31/2018	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
L0005126	09/30/2018	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
L0005126	06/30/2018	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
L0005126	03/31/2018	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
L0005126	12/31/2017	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
L0005126	09/30/2017	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
IL0005126	06/30/2017	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
IL0005126	03/31/2017	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
IL0005126	12/31/2016	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
IL0005126	09/30/2016	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
IL0005126	06/30/2016	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
IL0005126	03/31/2016	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
L0005126	12/31/2015	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
L0005126	09/30/2015	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
IL0005126	06/30/2015	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
IL0005126	03/31/2015	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
IL0005126	12/31/2014	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
IL0005126	09/30/2014	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
IL0005126	06/30/2014	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
IL0005126	03/31/2014	001-Q	39420-1-0	Heptachlor epoxide	Effluent Gross	< .00005	mg/L
IL0005126	12/31/2018	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .0005	
IL0005126	09/30/2018	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2018	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .0005	mg/L
					Effluent Gross		mg/L
IL0005126	03/31/2018	001-Q	39488-1-0	PCB-1221		< .0005	mg/L
IL0005126	12/31/2017	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2017	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2017	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2017	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2016	001-Q 001-Q	39488-1-0 39488-1-0	PCB-1221 PCB-1221	Effluent Gross	< .0005 < .0005	mg/L

L0005126	03/31/2016	001-Q	39488-1-0	PCB-1221	erk's @ffices 05/20/	< .0005	mg/L
L0005126	12/31/2015	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .0005	mg/L
L0005126	09/30/2015	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .0005	mg/L
L0005126	06/30/2015	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .0005	mg/L
L0005126	03/31/2015	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2014	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2014	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2014	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	39488-1-0	PCB-1221	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2018	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2018	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2018	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	
IL0005126	03/31/2018	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2017	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2017	001-Q	39492-1-0	PCB-1232	Effluent Gross		mg/L
IL0005126	06/30/2017	001-Q	39492-1-0	PCB-1232		< .0005	mg/L
IL0005126	03/31/2017	001-Q 001-Q	39492-1-0	PCB-1232	Effluent Gross Effluent Gross	< .0005	mg/L
IL0005126	12/31/2016	001-Q 001-Q	39492-1-0	PCB-1232		< .0005	mg/L
					Effluent Gross	< .0005	mg/L
IL0005126	09/30/2016	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2016	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2016	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2015	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2015	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2015	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2015	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2014	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2014	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2014	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	39492-1-0	PCB-1232	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2018	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2018	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2018	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2018	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2017	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
L0005126	09/30/2017	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2017	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2017	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2016	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2016	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2016	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2016	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2015	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2015	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2015	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2015	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2014	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2014	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2014	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .005	mg/L
IL0005126	03/31/2014	001-Q	39496-1-0	PCB-1242	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2018	001-Q	39500-1-0	PCB-1248	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2018	001-Q	39500-1-0	PCB-1248	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2018	001-Q	39500-1-0	PCB-1248	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2018	001-Q	39500-1-0	PCB-1248	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2017	001°Q	T39500-T-0	PUB-1248	Emuent Gross	< .0005	mg/L

IL0005126	09/30/2017)5/20/2020 _{< .0005} F	104mg/L
IL0005126	06/30/2017	001-Q	39500-1-0	PCB-1248	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2017	001-Q	39500-1-0	PCB-1248	Effluent Gross	<.0005	mg/L
IL0005126	12/31/2016	001-Q	39500-1-0	PCB-1248	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2016	001-Q	39500-1-0	PCB-1248	Effluent Gross	<.0005	mg/L
IL0005126	06/30/2016	001-Q	39500-1-0	PCB-1248	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2016	001-Q	39500-1-0	PCB-1248	Effluent Gross	<.0005	mg/L
IL0005126	12/31/2015	001-Q	39500-1-0	PCB-1248	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2015	001-Q	39500-1-0	PCB-1248	Effluent Gross	<.0005	mg/L
IL0005126	06/30/2015	001-Q	39500-1-0	PCB-1248	Effluent Gross	<.0005	mg/L
IL0005126	03/31/2015	001-Q	39500-1-0	PCB-1248	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2014	001-Q	39500-1-0	PCB-1248	Effluent Gross	<.0005	mg/L
IL0005126	09/30/2014	001-Q	39500-1-0	PCB-1248	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2014	001-Q	39500-1-0	PCB-1248	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2014	001-Q	39500-1-0	PCB-1248	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2018	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2018	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2018	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2018	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2017	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	, mg/L
IL0005126	09/30/2017	001-Q	39504-1-0	PCB-1254	Effluent Gross	<.0005	mg/L
IL0005126	06/30/2017	001-Q	39504-1-0	PCB-1254	Effluent Gross	<.0005	mg/L
IL0005126	03/31/2017	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2016	001-Q	39504-1-0	PCB-1254	Effluent Gross	<.0005	mg/L
IL0005126	09/30/2016	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2016	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2016	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2015	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2015	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2015	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2015	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2014	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2014	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2014	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2014	001-Q	39504-1-0	PCB-1254	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2018	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/L
fL0005126	09/30/2018	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2018	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/L
IL0005126	03/31/2018	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2017	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2017	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2017	001-Q	39508-1-0	PCB-1260	Effluent Gross	<.0005	mg/L
IL0005126	03/31/2017	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/L
IL0005126	12/31/2016	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/L
IL0005126	09/30/2016	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/L
IL0005126	06/30/2016	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/l
IL0005126	03/31/2016	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/l
IL0005126	12/31/2015	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/l
IL0005126	09/30/2015	001-Q	39508-1-0	PCB-1260	Effluent Gross	<.0005	mg/l
IL0005126	06/30/2015	001-Q	39508-1-0	PCB-1260	Effluent Gross	<.0005	mg/
IL0005126	03/31/2015	001-Q	39508-1-0	PCB-1260	Effluent Gross	<.0005	mg/l
IL0005126	12/31/2014	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/l
IL0005126	09/30/2014	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/l
IL0005126	06/30/2014	001-Q	39508-1-0	PCB-1260	Effluent Gross	< .0005	mg/l
IL0005126	03/31/2014	001-Q	39508-1-0	PCB-1260	Effluent Gross		mg/L

L0005126	12/31/2018				k's Office 05/20/202		103 ^{mg/L}
L0005126	09/30/2018	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	03/31/2018	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	09/30/2017	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	03/31/2017	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	09/30/2016	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2016	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	09/30/2015	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	03/31/2015	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	09/30/2014	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126.	03/31/2014	001-Q	39700-1-0	Hexachlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2018	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
L0005126	03/31/2018	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
L0005126	09/30/2017	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
L0005126	06/30/2017	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
L0005126	03/31/2017	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
L0005126	12/31/2016	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
L0005126	09/30/2016	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
L0005126	06/30/2016	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
L0005126	03/31/2016	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2015	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2015	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2014	001-Q	39702-1-0	Hexachlorobutadiene	Effluent Gross	< .01	mg/L
L0005126	12/31/2018	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
L0005126	09/30/2018	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2018	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2017	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
L0005126	03/31/2017	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2016	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
IL0005126	03/31/2016	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
IL0005126	09/30/2015	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
IL0005126	บอ/สบาว	001-Q	D1144-1-U	1,3-Dichioropropylene	Emperit Gross	₹.005	mg/L

IL0005126	03/31/2015		1154044111019.	17,54-Dietricht propyleter 1011	k's:1011 ice 05/20/2	040 <.005 R	I U4mg/L
IL0005126	12/31/2014	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
L0005126	09/30/2014	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
L0005126	03/31/2014	001-Q	51044-1-0	1,3-Dichloropropylene	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross		ng/L
L0005126	09/30/2018	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< 500	ng/L
L0005126	06/30/2018	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< 500	ng/L
L0005126	03/31/2018	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	NODIB	ng/L
L0005126	12/31/2017	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< 500	ng/L
L0005126	09/30/2017	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< 500	ng/L
L0005126	06/30/2017	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< 500	ng/L
L0005126	03/31/2017	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< 500	ng/L
L0005126	12/31/2016	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< 500	ng/L
L0005126	09/30/2016	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< 200	ng/L
L0005126	06/30/2016	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< 500	ng/L
L0005126	03/31/2016	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< .0005	mg/L
L0005126	12/31/2015	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< .0005	mg/L
L0005126	09/30/2015	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< .5	ng/L
L0005126	06/30/2015	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< 500	ng/L
L0005126	03/31/2015	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< 500	ng/L
L0005126	12/31/2014	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< 500	ng/L
L0005126	09/30/2014	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< 500	ng/L
L0005126	06/30/2014	001-Q	71900-1-0	Mercury, total [as Hg]	Effluent Gross	< .0005	ng/L
L0005126	12/31/2018	001-Q	79531-1-0	3,4-Benzofluoranthene	Effluent Gross	< .01	mg/L
L0005126	09/30/2018	001-Q	79531-1-0	3,4-Benzofluoranthene	Effluent Gross	< .01	mg/L
L0005126	06/30/2018	001-Q	79531-1-0	3,4-Benzofluoranthene	Effluent Gross	< .01	mg/L
L0005126	03/31/2018	001-Q	79531-1-0	3.4-Benzofluoranthene	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	001-Q	79531-1-0	3,4-Benzofluoranthene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2017	001-Q	79531-1-0	3.4-Benzofluoranthene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	001-Q	79531-1-0	3,4-Benzofluoranthene	Effluent Gross	< .01	mg/L
L0005126	03/31/2017	001-Q	79531-1-0	3.4-Benzofluoranthene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	001-Q	79531-1-0	3,4-Benzofluoranthene	Effluent Gross	< .01	
	09/30/2016	001-Q	79531-1-0	3,4-Benzofluoranthene	Effluent Gross	< .01	mg/L mg/L
IL0005126	06/30/2016		79531-1-0	3,4-Benzofluoranthene	Effluent Gross	< .01	mg/L
IL0005126	03/31/2016	001-Q 001-Q		3,4-Benzofluoranthene	Effluent Gross	< .01	
IL0005126			79531-1-0		Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	001-Q	79531-1-0	3,4-Benzofluoranthene 3.4-Benzofluoranthene	Effluent Gross		mg/L
IL0005126 IL0005126	09/30/2015	001-Q	79531-1-0	3.4-Benzofluoranthene	Effluent Gross	< .01	mg/L
	06/30/2015	001-Q	79531-1-0		Effluent Gross		mg/L
IL0005126	03/31/2015	001-Q	79531-1-0	3,4-Benzofluoranthene		< .01	mg/L
IL0005126	12/31/2014	001-Q	79531-1-0	3,4-Benzofluoranthene	Effluent Gross	< .01	mg/L
IL0005126	09/30/2014	001-Q	79531-1-0	3,4-Benzofluoranthene	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	001-Q	79531-1-0	3,4-Benzofluoranthene	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	002-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	06/30/2018	002-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	12/31/2017	002-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	06/30/2017	002-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	12/31/2016	002-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	06/30/2016	002-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	12/31/2015	002-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	06/30/2015	002-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	12/31/2014	002-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	06/30/2014	002-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
IL0005126	12/31/2018	002-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	002-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L

L0005126	12/31/2017				k's Office 05/20/2		105mg/L
Ľ0005126	06/30/2017	002-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	002-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	002-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
_0005126	12/31/2015	002-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	002-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	002-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	002-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	002-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
L0005126	06/30/2018	002-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
L0005126	12/31/2017	002-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
L0005126	06/30/2017	002-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
L0005126	12/31/2016	002-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
L0005126	06/30/2016	002-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
L0005126	12/31/2015	002-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
_0005126	06/30/2015	002-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
_0005126	12/31/2014	002-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
.0005126	06/30/2014	002-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
_0005126	12/31/2018	002-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .005	mg/L
_0005126	06/30/2018	002-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	002-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	002-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
L0005126	12/31/2016	002-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
L0005126	06/30/2016	002-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
_0005126	12/31/2015	002-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
L0005126	06/30/2015	002-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
L0005126	12/31/2014	002-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
_0005126	06/30/2014	002-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
L0005126	12/31/2018	. 002-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	06/30/2018	002-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	12/31/2017	002-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	06/30/2017	002-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	12/31/2016	002-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	06/30/2016	002-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	12/31/2015	002-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	06/30/2015	002-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	12/31/2014	002-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	06/30/2014	002-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	12/31/2018	002-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	002-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	002-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
_0005126	06/30/2017	002-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	002-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	002-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	002-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	002-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	002-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
_0005126	06/30/2014	002-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	002-S	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	002-S	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	002-S	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	002-S	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	002-S	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	002-S	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	002-5	34030-1-0		Emociii Ologo	~ .005	mg/L

L0005126				Received, Clerk			106 mg/L
L0005126	12/31/2014	002-S	34030-1-0	Benzene	Effluent Gross	< .O05	mg/L
L0005126	06/30/2014	002-S	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	002-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	002-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	002-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	002-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	002-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	002-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	002-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	002-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	002-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	002-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	002-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	06/30/2018	002-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	002-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	06/30/2017	002-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	12/31/2016	002-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	06/30/2016	002-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	12/31/2015	002-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	06/30/2015	002-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	12/31/2014	002-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	06/30/2014	002-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
L0005126	12/31/2018	002-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	002-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	
L0005126	12/31/2017	002-S	34371-1-0	Ethylbenzene	Effluent Gross		mg/L
L0005126 L0005126	06/30/2017	002-S	34371-1-0		Effluent Gross	< .005	mg/L
				Ethylbenzene		< .005	mg/L
L0005126	12/31/2016	002-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	002-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	002-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	002-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	002-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	002-8	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	002-S	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	002-S	34413-1-0	Methyl bromide	Effluent Gross	< .005	mg/L
				[Bromomethane]			-
L0005126	12/31/2017	002-8	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	002-S	34413-1-0	Methyl bromide	Effluent Gross	< .005	mg/L
				[Bromomethane]			
L0005126	12/31/2016	002-S	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	002-S	34413-1-0	Methyl bromide	Effluent Gross	< .005	mg/L
				[Bromomethane]			
L0005126	12/31/2015	002-S	34413-1-0	Methyl bromide	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	002-S	34413-1-0	[Bromomethane] Methyl bromide	Effluent Gross	< .005	mg/L
				[Bromomethane]			9/2
L0005126	12/31/2014	002-S	34413-1-0	Methyl bromide	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	002-S	34413-1-0	[Bromomethane] Methyl bromide	Effluent Gross	< .005	mg/L
0000.20	33,00,2014	002-0	0.710 1-0	[Bromomethane]		000	mg/c
IL0005126	12/31/2018	002-S	34418-1-0	Methyl chloride	Effluent Gross	< .01	mg/L
L0005126	06/30/2018	002-S	34418-1-0	[Chloromethane] Methyl chloride	Effluent Gross	< .01	P
120003120	00/30/2018	002-5	344 10-1-0	[Chloromethane]	Ciliuent Gross	۲۵. >	mg/L
L00.05126	12/31/2017	002-S	34418-1-0	Methyl chloride	Effluent Gross	< .01	mg/L
10005400	06/20/2047	000.0	24440.4.0	[Chloromethane]	Efficient Coope		
L0005126	06/30/2017	002-S	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
				Chiloroniethanet			

IL0005126	06/30/2016		i ®⁴F iling:	[Chloromethane]	's:@ffice:05/20/2020) <.01 R	107mg/L
IL0005126	12/31/2015	002-S	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	002-S	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	002-S	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	002-S	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	002-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	002-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	002-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	002-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	002-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	002-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	002-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	002-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	002-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	002-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	002-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	002-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	002-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	002-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	002-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	002-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	002-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	002-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	002-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	002-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	002-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	002-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	002-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	002-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	002-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	
IL0005126	06/30/2016	002-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	.005	mg/L
		002-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	002-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015				Effluent Gross		mg/L
IL0005126	12/31/2014	002-S	34488-1-0	Trichlorofluoromethane		< .005	mg/L
IL0005126	06/30/2014	Q02-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	002-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	002-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	002-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	002-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	002-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	002-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	002-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	002-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	002-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	002-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	002-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	002-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	002-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	002-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	002-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	002-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	002-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	ma/L

L0005126	12/31/2014		_	ReceivedenClerk			108mg/L
L0005126	06/30/2014	002-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	002-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	002-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	002-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	002-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	002-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	002-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	002-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	002-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	002-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	002-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	002-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	002-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	002-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	002-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	002-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	002-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	002-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	002-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	002-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	002-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	002-S	34516-1-0	1,1,2,2-Tetrachioroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	002-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	002-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	002-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	002-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	002-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	002-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	002-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	002-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	002-S	34516-1-0	1,1,2,2-Tetrachioroethane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	002-S	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
iL0005126	06/30/2018	002-S	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	002-S	34531-1-0	1,2-Dichloroethane, total	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	002-S	34531-1-0	weight 1,2-Dichloroethane, total	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	002-S	34531-1-0	weight 1,2-Dichloroethane, total	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	002-S	34531-1-0	weight 1,2-Dichloroethane, total	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	002-S	34531-1-0	weight 1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	002-S	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	002-S	34531-1-0	1,2-Dichloroethane, total	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	002-S	34531-1-0	weight 1,2-Dichloroethane, total	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	002-S	34536-1-0	weight 1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	002-S	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	-
		002-S	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017				Effluent Gross		mg/L
IL0005126	06/30/2017	002-S	34536-1-0	1,2-Dichlorobenzene		< .005	mg/L
IL0005126	12/31/2016	002-S	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	002-S	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	002-S	34536-1-0 34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005 < .005	mg/L mg/L

L0005126 L0005126	12/31/2014 06/30/2014	002-S	34536-1-0	Receiveden Clerk	Effluent Gross	/2020 < .005 R < .005	109mg/L mg/L
0005126	12/31/2018	002-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
0005126	06/30/2018	002-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
.0005126	12/31/2017	002-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
.0005126	06/30/2017	002-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	002-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
_0005126	06/30/2016	002-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	002-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
_0005126	06/30/2015	002-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	<.005	
L0005126	12/31/2014	002-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	002-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	002-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
L0005126	06/30/2018	002-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	<.001	mg/L
L0005126	12/31/2017	002-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
_0005126	06/30/2017	002-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
		002-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	<.001	
_0005126 _0005126	12/31/2016 06/30/2016	002-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	<.001	mg/L
L0005126 L0005126	12/31/2015	002-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	<.001	mg/L
	06/30/2015	002-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	
0005126	12/31/2014	002-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
L0005126 L0005126	06/30/2014	002-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
L0005126	12/31/2018	002-S 002-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .001	mg/L
L0005126		002-S	34566-1-0		Effluent Gross	< .005	mg/L
	06/30/2018		34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126		002-S 002-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126 L0005126	06/30/2017	002-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
	12/31/2016	002-S			Effluent Gross	< .005	mg/L
L0005126	06/30/2016		34566-1-0	1,3-Dichlorobenzene			mg/L
L0005126	12/31/2015	002-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	<.005	mg/L
L0005126	06/30/2015	002-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	002-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	002-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	002-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005 < .005	mg/L
L0005126	06/30/2018	002-S	34571-1-0 34571-1-0	1,4-Dichlorobenzene	Effluent Gross		mg/L
L0005126	12/31/2017	002-8		1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	002-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	002-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	002-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	002-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	002-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	002-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	002-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	002-S	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL00051 2 6	06/30/2018	002-S	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
L0005126	12/31/2017	002-S	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
L0005126	06/30/2017	002-S	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
L0005126	12/31/2016	002-S	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	002-S	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	002-S	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< :01	mg/L.
IL0005126	06/30/2015	002-S	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
L0005126	12/31/2014	002-5	34576-1-0	[Z-Chloroethyl vinyl ether,	Emilient Gross	ro. >	mg/L

L0005126	06/30/2014	⊏ıêÇıgon	134576!!![hg:	2-Chloroethy Viny ether, FK [mixed]	c's Office 05/20/20	J2U _{< .01} R	110 _{mg/L}
L0005126	12/31/2018	002-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	002-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	002-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	002-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
_0005126	12/31/2016	002-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	002-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	.005	mg/L
L0005126	12/31/2015	002-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	002-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	002-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	002-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	002-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	002-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	002-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
_0005126	06/30/2017	002-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
_0005126	12/31/2016	002-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
.0005126	06/30/2016	002-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	.005	mg/L
_0005126	12/31/2015	002-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	-
_0005126	06/30/2015	002-S 002-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
		002-S	34704-1-0			< .005	mg/L
L0005126	12/31/2014		34704-1-0	cis-1,3-Dichloropropene	Effluent Gross Effluent Gross	< .005	mg/L
L0005126		002-S		cis-1,3-Dichloropropene			mg/L
L0005126	12/31/2018	002-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
L0005126	06/30/2018	002-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
L0005126	12/31/2017	002-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
L0005126	06/30/2017	002-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
L0005126	12/31/2016	002-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
L0005126	06/30/2016	002-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
L0005126	12/31/2015	002-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
L0005126	06/30/2015	002-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
L0005126	12/31/2014	002-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
L0005126	06/30/2014	002-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
L0005126	12/31/2018	002-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	002-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	002-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	002-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	002-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	002-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	002-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	002-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	002-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	002-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	003-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
L0005126	06/30/2018	003-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
L0005126	12/31/2017	003-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
L0005126	06/30/2017	003-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
L0005126	12/31/2016	003-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
L0005126	06/30/2016	003-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
L0005126	12/31/2015	003-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
L0005126	06/30/2015	003-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
L0005126	12/31/2014	003-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
L0005126	06/30/2014	003-S	32101-1-0	Dichlorobromomethane	Effluent Gross	< .001	mg/L
L0005126	12/31/2018	003-S	32101-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	003-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
	12/21/2017	003-3	32102-1-0	Carbon tetracinoride	Efficient Gross	005	
IL0005126	06/30/2017	003-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L mg/L

L0005126	12/31/2016	□160378 O	1132102313019.	Received Cler	- Cilleent Gross 9 97 = 97	2020 0.005 11	111 _{mg/L}
0005126	06/30/2016	003-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
_0005126	12/31/2015	003-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
0005126	06/30/2015	003-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005 ,	mg/L
0005126	12/31/2014	003-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
_0005126	06/30/2014	003-S	32102-1-0	Carbon tetrachloride	Effluent Gross	< .005	mg/L
_0005126	12/31/2018	003-S	32104-1-0	Bromoform	Effluent Gross	<.001	mg/L
_0005126	06/30/2018	003-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
_0005126	12/31/2017	003-S	32104-1-0	Bromoform	Effluent Gross	<.001	mg/L
L0005126	06/30/2017	003-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
L0005126	12/31/2016	003-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
L0005126	06/30/2016	003-S	32104-1-0	Bromoform	Effluent Gross	<.001	mg/L
L0005126	12/31/2015	003-S	32104-1-0	Bromoform	Effluent Gross	<.001	mg/L
L0005126	06/30/2015	003-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
L0005126	12/31/2014	003-S	32104-1-0	Bromoform	Effluent Gross	<.001	mg/L
L0005126	06/30/2014	003-S	32104-1-0	Bromoform	Effluent Gross	< .001	mg/L
L0005126	12/31/2018	003-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	003-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	003-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	003-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
L0005126	12/31/2016	003-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
L0005126	06/30/2016	003-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
IL0005126	12/31/2015	003-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
L0005126	06/30/2015	003-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
L0005126	12/31/2014	003-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
L0005126	06/30/2014	003-S	32105-1-0	Dibromochloromethane	Effluent Gross	< .001	mg/L
L0005126	12/31/2018	003-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
IL0005126	06/30/2018	003-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
IL0005126	12/31/2017	003-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
L0005126	06/30/2017	003-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
IL0005126	12/31/2016	003-S	32106-1-0	Chioroform	Effluent Gross	< .001	mg/L
IL0005126	06/30/2016	003-\$	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
IL0005126	12/31/2015	003-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
IL0005126	06/30/2015	003-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
IL0005126	12/31/2014	003-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
IL0005126	06/30/2014	003-S	32106-1-0	Chloroform	Effluent Gross	< .001	mg/L
IL0005126	12/31/2018	003-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	003-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	003-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	003-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	003-S	34010-1-0	Toluene-	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	003-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	003-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	003-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	003-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	003-S	34010-1-0	Toluene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	003-S	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	003-S	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	003-S	34030-1-0	Benzene	Effluent Gross	< .005	
	06/30/2017	003-S	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126					Effluent Gross		mg/L
IL0005126	12/31/2016	003-S	34030-1-0	Benzene		< .005	mg/L
IL0005126	06/30/2016	003-8	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	003-S	34030-1-0	Benzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	003-S	34030-1-0	Benzene	Effluent Gross	< .005	mg/L

IL0005126	06/30/2014		34030-1-0-9	: Received, Clerk	Effluent Gross	2020 _{< .005} R	112 _{mg/L}
IL0005126	12/31/2018	003-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	003-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	003-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	003-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	003-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	003-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	003-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	003-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
fL0005126	12/31/2014	003-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	003-S	34301-1-0	Chlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	003-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	003-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	003-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	003-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	003-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	003-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	003-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
1L0005126	06/30/2015	003-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	003-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
IL0005126	06/30/2014	003-S	34311-1-0	Chloroethane, total weight	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	003-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	003-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	003-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	003-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	003-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	003-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	003-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	003-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	003-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	003-S	34371-1-0	Ethylbenzene	Effluent Gross	< .005	
IL0005126	12/31/2018	003-S	34413-1-0		Effluent Gross	< .005	mg/L
120003120		003-3	34413-1-0	Methyl bromide [Bromomethane]	Ellident Gloss	< .005	mg/L
IL0005126	06/30/2018	003-S	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	003-S	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	003-S	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	003-S	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	003-S	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	003-S	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	003-S	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	003-S	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
1L0005126	06/30/2014	003-S	34413-1-0	Methyl bromide [Bromomethane]	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	003-S	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2018	003-S	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	003-S	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	003-S	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	003-S	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L

IL0005126	12/31/2015	⊏l@@tson	i®₄F₅iling:	Machined, Cler	k's:10ffice:05/20/202	.0 < .01 R	113mg/L
IL0005126	06/30/2015	003-S	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	<.01	mg/L
IL0005126	12/31/2014	003-S	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	<.01	mg/L
IL0005126	06/30/2014	003-S	34418-1-0	Methyl chloride [Chloromethane]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2018	003-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	003-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	003-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	003-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	003-S	34423-1-0	Methylene chloride	Effluent Gross	<.005	mg/L
IL0005126	06/30/2016	003-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	003-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	003-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	003-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	003-S	34423-1-0	Methylene chloride	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	003-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	003-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	003-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	003-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/l
IL0005126	12/31/2016	003-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/l
IL0005126	06/30/2016	003-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/l
!L0005126	12/31/2015	003-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/l
IL0005126	06/30/2015	003-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	003-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	003-S	34475-1-0	Tetrachloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	003-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/l
IL0005126	06/30/2018	003-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/l
IL0005126	12/31/2017	003-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/l
IL0005126	06/30/2017	003-S	34488-1-0	Trichlorofluoromethane	Effluent Gross		mg/l
IL0005126	12/31/2016	003-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/l
IL0005126	06/30/2016	003-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/l
IL0005126	12/31/2015	003-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/l
IL0005126	06/30/2015	003-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/l
IL0005126	12/31/2014	003-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/l
IL0005126	06/30/2014	003-S	34488-1-0	Trichlorofluoromethane	Effluent Gross	< .005	mg/l
IL0005126	12/31/2018	003-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/l
IL0005126	06/30/2018	003-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/l
IL0005126	12/31/2017	003-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/l
IL0005126	06/30/2017	003-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/l
IL0005126	12/31/2016	003-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/l
IL0005126	06/30/2016	003-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/l
IL0005126	12/31/2015	003-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
iL0005126	06/30/2015	003-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/l
IL0005126	12/31/2014	003-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	003-S	34496-1-0	1,1-Dichloroethane	Effluent Gross	< .005	mg/l
IL0005126	12/31/2018	003-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	003-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/l
!L0005126	12/31/2017	003-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	003-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/l
IL0005126	12/31/2016	003-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/l
IL0005126	06/30/2016	003-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/l
IL0005126	12/31/2015	003-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	<.005	mg/L
IL0005126	06/30/2015	003-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	003-S	34501-1-0	1,1-Dichloroethylene	Effluent Gross	< .005	mg/L

L0005126				Reseived			114 _{mg/L} ,
L0005126	12/31/2018	003-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	003-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	003-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .O05	mg/L
L0005126	06/30/2017	003-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	003-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	003-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	003-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	003-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	003-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	003-S	34506-1-0	1,1,1-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	003-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	003-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	003-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	003-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	003-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	003-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	003-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	003-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	003-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2014	003-S	34511-1-0	1,1,2-Trichloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2018	003-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	003-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2017	003-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	003-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2016	003-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	003-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	003-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	06/30/2015	003-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	003-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	003-S	34516-1-0	1,1,2,2-Tetrachloroethane	Effluent Gross	< .005	
L0005126	12/31/2018	003-S	34531-1-0	1,2-Dichloroethane, total	Effluent Gross	< .005	mg/L
120003120	12/31/2016	003-3	34331-1-0	weight	Lindent Gloss	1.005	mg/L
IL0005126	06/30/2018	003-S	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	003-S	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	003-\$	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	003-S	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	003-S	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	003-S	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	003-S	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	003-S	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	003-S	34531-1-0	1,2-Dichloroethane, total weight	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	003-S	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	003-S	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	003-S	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	003-S	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	003-S	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	06/30/2016	003-S	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	003-S	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	003-S	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L
L0005126	12/31/2014	003-S	34536-1-0	1,2-Dichlorobenzene	Effluent Gross	< .005	mg/L

L0005126	06/30/2014			Received Clerk			115 ^{mg/L}
L0005126	12/31/2018	003-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	06/30/2018	003-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	003-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
L0005126	06/30/2017	003-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	003-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	003-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	003-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	003-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	003-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	003-S	34541-1-0	1,2-Dichloropropane	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	003-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
IL0005126	06/30/2018	003-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
IL0005126	12/31/2017	003-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
IL0005126	06/30/2017	003-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
IL0005126	12/31/2016	003-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
IL0005126	06/30/2016	003-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
IL0005126	12/31/2015	003-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
IL0005126	06/30/2015	003-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
IL0005126	12/31/2014	003-S	34546-1-0	trans-1,2-Dichloroethyléne	Effluent Gross	< .001	mg/L
IL0005126	06/30/2014	003-S	34546-1-0	trans-1,2-Dichloroethylene	Effluent Gross	< .001	mg/L
IL0005126	12/31/2018	003-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	003-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	003-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	003-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	<.005	mg/L
IL0005126	12/31/2016	003-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	003-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	003-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	003-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	003-S	. 34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	003-S	34566-1-0	1,3-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	003-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	003-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
JL0005126	12/31/2017	003-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	003-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
JL0005126	12/31/2016	003-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	003-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
(L0005126	12/31/2015	003-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	003-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	003-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	003-S	34571-1-0	1,4-Dichlorobenzene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	003-S	34576-1-0	2-Chloroethyl vinyl ether,	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	003-S	34576-1-0	[mixed] 2-Chloroethyl vinyl ether,	Effluent Gross	< .01	mg/L
IL0005126	12/31/2017	003-S	34576-1-0	[mixed] 2-Chloroethyl vinyl ether,	Effluent Gross	< .01	mg/L
IL0005126	06/30/2017	003-S	34576-1-0	[mixed] 2-Chloroethyl vinyl ether,	Effluent Gross	< .01	mg/L
IL0005126	12/31/2016	003-S	34576-1-0	[mixed] 2-Chloroethyl vinyl ether,	Effluent Gross	< .01	mg/L
IL0005126	06/30/2016	003-S	34576-1-0	[mixed] 2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2015	003-S	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	06/30/2015	003-S	34576-1-0	2-Chloroethyl vinyl ether, [mixed]	Effluent Gross	< .01	mg/L
IL0005126	12/31/2014	003-S	34576-1-0	2-Chloroethyl vinyl ether,	Effluent Gross	< .01	mg/L

IL0005126	06/30/2014	Electron	G5/6Hing:	RECEINAND CHECK	's Office 05/20/2	$020_{<.01}$ R	116 _{ray/L}
IL0005126	12/31/2018	003-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	003-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	<.005	mg/L
IL0005126	12/31/2017	003-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	003-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross		mg/L
IL0005126	12/31/2016	003-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	003-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	003-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	003-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	<.005	mg/L
IL0005126	12/31/2014	003-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	003-S	34699-1-0	trans-1,3-Dichloropropene	Effluent Gross	<.005	mg/L
IL0005126	12/31/2018	003-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	003-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	<.005	mg/L
IL0005126	12/31/2017	003-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	003-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	***	mg/L
IL0005126	12/31/2016	003-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	003-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
L0005126	12/31/2015	003-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	003-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	003-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	003-S	34704-1-0	cis-1,3-Dichloropropene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2018	003-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	06/30/2018	003-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	12/31/2017	003-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	06/30/2017	003-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	12/31/2016	003-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
L0005126	06/30/2016	003-S	39175-1-0	Vinyl chloride	Effluent Gross	.0049	mg/L
IL0005126	12/31/2015	003-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	06/30/2015	003-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	12/31/2014	003-S	39175-1-0	Vinyl chloride	Effluent Gross	< .002	mg/L
IL0005126	06/30/2014	003-S	39175-1-0	Vinyl chloride	Effluent Gross	.0036	mg/L
IL0005126	12/31/2018	003-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2018	003-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2017	003-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2017	003-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2016	003-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2016	003-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2015	003-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2015	003-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	12/31/2014	003-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L
IL0005126	06/30/2014	003-S	39180-1-0	Trichloroethylene	Effluent Gross	< .005	mg/L

Ammonia Worksheet

Discharger:	IMTT- Lemont	NPDES:	IL0005126	Date:	4/3/19
Receiving Stream:	I&M Canal				

Calculation of the total ammonia (as N) water quality standard

pH and tem	perature values u	ised in calcula	Total amm	onia (as N)	water quali	ty standard		
	pН		temp		Chronic	С	Acute	
	50th %ile	75th %ile	75th %ile		(50th %ile)	(75th %ile)	(75th %ile)	
Spring/Fall	7.44	7.54	19.0	Spring/Fall	3.4	3.2	18.7	
Summer	7.34	7.44	25.0	Summer	2.5	2.3	21.7	
Winter	7.43	7.67	8.1	Winter	7.0	5.6	15.2	

AWQMN station H-01, Calumet-Sag Channel, N of Sag Bridge, Data Source: for the dates Jan. 2009 to Dec. 2013.

Note: Calculation of total ammonia (as N) water quality standards are based on the algorithms found at 35 IAC 302.212(b) and recommended water quality based limits for ammonia are derived pursuant to methodologies outlined at 35 IAC Part 355. Spring/Fall constists of March - May, September - October.

Summer consists of June - August. Winter consists of November - February.

Chronic Wasteload Allocation Ce= [Cds(Qus+Qe)-CusQus] / Qe

Effluent Flow (Qe): Upstream 7Q10:

0.368 cfs 0 cfs (DAF)

ISWS map of the Northeastern Region. Source:

7Q10 for dilution (Qus):

0 cfs

wasteload allocation:

spring/fall

3.2 mg/L

(based on 75th percentile pH)

summer winter

2.3 mg/L

(based on 75th percentile pH)

5.6 mg/L

(based on 75th percentile pH)

Acute Wasteload Allocation

Ce= S(Cds-Cus)+Cus

NO MIXING AVAILABLE DURING 7Q10 LOW-FLOW CONDITIONS

wasteload allocation:

spring/fall

18.7 mg/L

summer winter

21.7 mg/L 15.2 mg/L

WQBELs Recommended:

Daily Maximum:

15.0 mg/L** spring/fall

summer winter

15.0 mg/L**

30-day Average:

spring/fall

15.0 mg/L**

summer

3.2 mg/L 2.3 mg/L

5.6 mg/L

Weekly Average*:

spring/fall summer

winter

7.9 mg/L

winter

5.8 mg/L 14.0 mg/L

^{*} Note: Weekly average limits are based on the subchronic standard which is defined as 2.5 times the chronic standard at 35 IAC 302.212(b)(3).

^{**} Note: Limited to 15.0 mg/L based on 35 IAC 302.212(a).

From:

Brokaw, Abby

To:

Tsai, Shu-Mei

Subject:

RE: NPDES No. IL0063061 IMTT Lemont - Joliet

Date:

Friday, May 31, 2019 9:36:48 AM

Attachments:

image003.png image004.png image022.png image005.wmz image009.pmg image010.png image011.wmz image012.png

Hi Shu-Mei,

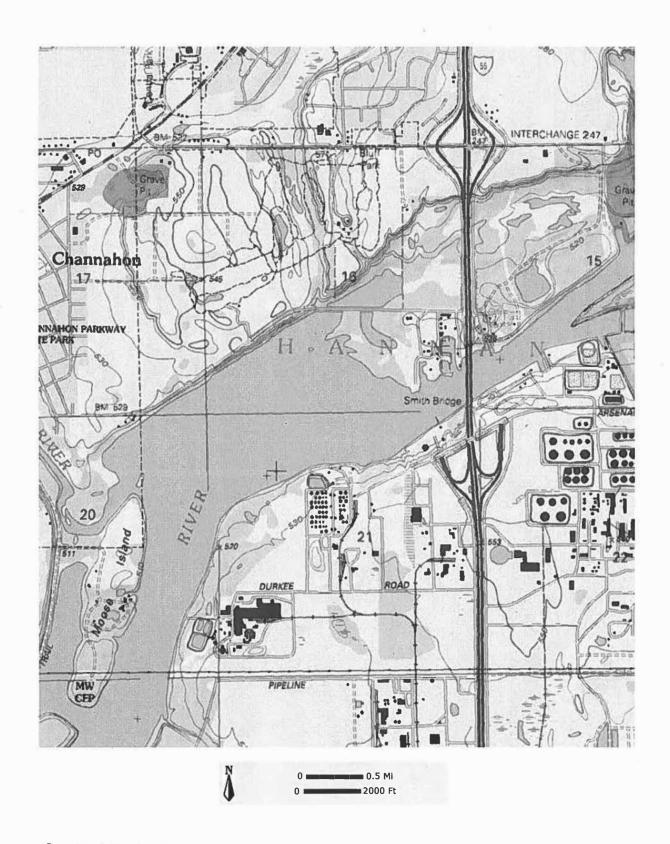
Outfalls 001 and 002 discharge to the Des Plaines River (IL_G-24). 303(d) List/BSC information for the Chicago River is provided below:

- · General Use Water
- 1503 cfs of flow upstream during 7Q10 low-flow conditions
- Listed on the draft 2016 Integrated Water Quality Report and 303(d) List as impaired for fish
 consumption use with potential causes given as mercury and polychlorinated biphenyls, and primary
 contact use with a potential cause given as fecal coliform. Aquatic life use is fully supported.
- Not a biologically significant stream or given an integrity rating according to 2008 IDNR document Integrating Multiple Taxa in a Biological Stream Rating System.
- · Subject to enhanced DO standards

Abby Brokaw

Bureau of Water | Water Quality Standards Illinois Environmental Protection Agency P: 217-782-3362 | E: <u>Abby.Brokaw@Illinois.gov</u>

From: Tsai, Shu-Mei


Sent: Thursday, May 30, 2019 3:09 PM

To: Brokaw, Abby <Abby.Brokaw@illinois.gov> **Subject:** NPDES No. IL0063061 IMTT Lemont - Joliet

Hi, Abby:

Please provide 303(d) List/BSC. Thanks

C

Shw-Mei Tsai,
Environmental Protection Engineer, Industrial Unit
Permit Section
Division of Water Pollution Control

Illinois Environmental Protection Agency

ph: 217-782-0610 fax: 217-782-9891

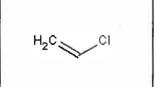
Shu-Mei.Tsai@Illinois.gov

State of Illinois - CONFIDENTIALITY NOTICE: The information contained in this communication is confidential, may be attorney-client privileged or attorney work product, may constitute inside information or internal deliberative staff communication, and is intended only for the use of the addressee. Unauthorized use, disclosure or copying of this communication or any part thereof is strictly prohibited and may be unlawful. If you have received this communication in error, please notify the sender immediately by return e-mail and destroy this communication and all copies thereof, including all attachments. Receipt by an unintended recipient does not waive attorney-client privilege, attorney work product privilege, or any other exemption from disclosure.

Illinois Environmental Protection Agency Bureau of Water – Water Quality Standards Section

Vinyl Chloride

CAS:


75-01-4

Water Solubility:

0.11 g/100 mL at 25°C

Log Kow:

1.36

Derived Criteria

Human Health: Where no human health standard is applicable for a chemical substance within General Use waters, a Human Threshold Criterion (HTC) or Human Nonthreshold Criterion (HNC) may be calculated pursuant to 35 IAC 302.642-657. Criteria are derived for surface waters classified as public or food processing water supplies (drinking), as well as surface waters classifies as primary contact or general use sources (non-drinking).

Human Health Nonthreshold Criteria

Primary Contact:

 $1.5 \mu g/L$

General Use:

2 μg/L

Public or Food Processing Water Supply:

 $0.025 \mu g/L$

Aquatic Life: Where no aquatic life standard is applicable for a chemical substance within General Use waters, acute and chronic criteria may be calculated pursuant to 35 IAC 302.612-630.

Aquatic Life Criteria

General Use Acute:

22,000 µg/L

General Use Chronic:

 $1,700 \mu g/L$

Human Health Calculations

 $HNC (35 IAC 302.657) = RAI/[W + (F \times BCF)]$

Oral slope factor = 1.4 mg/kg/d (IRIS, 2000)

RAI (35 IAC 302.654) = $70 \text{ kg x } 10^{-6} / 1.4 \text{ mg/kg/d} = 0.00005 \text{ mg/kg/d}$

W = 2 L/d for public or food processing water supplies, 0.01 L/d for primary contact waters, and 0.001 L/d for general use waters.

F = Assumed daily fish consumption (0.020 kg/d).

BCF = Aquatic organism bioconcentration factor of 1.17 L/kg from National Recommended Water Quality Criteria (CFR67:79091-79095).

Primary Contact =
$$\frac{0.00005 \text{ mg/kg/d}}{0.01 \text{ L/d} + [(0.02 \text{ kg/d} \times 1.17 \text{ L/kg})]} = 1.5 \text{ µg/L}$$
General Use =
$$\frac{0.00005 \text{ mg/kg/d}}{0.001 \text{ L/d} + [(0.02 \text{ kg/d} \times 1.17 \text{ L/kg})]} = 2 \text{ µg/L}$$
Public/Food Processing Supply =
$$\frac{0.00005 \text{ mg/kg/d}}{2 \text{ L/d} + [(0.02 \text{ kg/d} \times 1.17 \text{ L/kg})]} = 0.025 \text{ µg/L}$$

Aquatic Life Calculations

Acute: Tier II, 35 IAC 302.612(c) Chronic: Tier II, 35 IAC 302.627(c)(5)

AATC = lowest SMAV / 10 CATC = AATC * 2 / 25

AATC = 218 mg/L / 10 = 22,000
$$\mu$$
g/L

CATC = 43.6 mg/L / 25 = 1,700 μ g/L

Table 1. LC50s and resulting SMAVs for vinyl chloride, referenced toxicity values are denoted in superscript.

Species	LC_{50} / EC_{50} (mg/L)	SMAV (mg/L)	ACR*	Concentration (mg/L)
Water flea Daphnia magna	521	521	(-)	521 ¹
Fathead minnow Pimephales promelas	218	218	÷	218 ²

^{*} Chronic data unavailable

References

- RMT, Inc. 2000. Findings of the toxicity testing for vinyl chloride as part of the situation specific response plan for ACL exceedences in groundwater. Report to Michigan DEQ
- 2. RMT, Inc. 2000. Findings of the toxicity testing for vinyl chloride as part of the situation specific response plan for ACL exceedences in groundwater. Report to Michigan DEQ

Notes

Human threshold criteria were calculated but were less stringent than HNC criteria

Derivation History

Derived November 17, 2008

Contact Information

Brian Koch Water Quality Standards, Bureau of Water Illinois Environmental Protection Agency 1021 North Grand Avenue East Springfield, IL 62794-9276

Brian.Koch@illinois.gov

Electronic Filing: Received, Clerk's Office 05/20/2020 R 124 ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 • (217) 782-339

JB PRITZKER, GOVERNOR

JOHN J. KIM, ACTING DIRECTOR

Memorandum

DATE:

11 July 2019

TO:

Shu-Mei Tsai

FROM:

Scott Twait 51

SUBJECT:

Water Quality Based Effluent Limits

IMTT - Illinois

NPDES #IL0005126 (Cook County)

The subject facility discharges to the I&M Canal at a point where 0 cfs, via Outfalls 001 and 002, of flow exists upstream of the outfall during critical 7Q10 low-flow conditions. The facility has a DAF of 0.238 MGD for Outfall 001. The I&M Canal is classified as a General Use Water. The I&M Canal is not listed as a biologically significant stream in the 2008 Illinois Department of Natural Resources Publication Integrating Multiple Taxa in a Biological Stream Rating System, nor is it given an integrity rating in that document. The I&M Canal, Waterbody Segment, GU, is not listed on the draft 2016 Illinois Integrated Water Quality Report and Section 303(d) List since it has not been assessed. The I&M Canal is not subject to enhanced dissolved oxygen standards.

The subject facility discharges to the Cal-Sag Channel at a point where 0 cfs, via Outfall 003, of flow exists upstream of the outfall during critical 7Q10 low-flow conditions. The Cal-Sag Channel is classified as a Chicago Area Waterway System Aquatic Life Use A Water. The Cal-Sag Channel is not listed as a biologically significant stream in the 2008 Illinois Department of Natural Resources Publication *Integrating Multiple Taxa in a Biological Stream Rating System*, nor is it given an integrity rating in that document. The Cal-Sag Channel, Waterbody Segment, H-01, is listed on the draft 2016 Illinois Integrated Water Quality Report and Section 303(d) List as impaired for indigenous aquatic life use with potential causes given as dissolved oxygen (non-pollutant), iron, phosphorus, and total suspended solids (TSS), and fish consumption use with potential causes given as mercury and polychlorinated biphenyls. Aesthetic quality use is fully supported. The Cal-Sag Channel is not subject to enhanced dissolved oxygen standards.

Cadmium, Chromium (Trivalent), Copper, Lead, Nickel, and Zinc standards are based on hardness data collected at AWQMN station H-01, Calumet-Sag Channel, with a critical hardness value of 210 mg/L as CaCO₃. Water quality standards identified in the table are expressed in units of mg/L except where noted. Dissolved metals standards have been converted to total metal except where noted. All data was provided by the discharger.

Outfall 001

Substance	Max. Eff. Conc.	No. of Samples	Multiply` by	95% Potential	Acute Standard	Chronic Standard	302.208(g) standard	Further Analysis?
Arsenic	< 0.01	17	1.4	0.014	0.3600	0.1900	_	No RP*
Barium	0.359	17	1.4	0.5026		-	5.0	No RP*
Cadmium	< 0.005	17	1.4	0.007	0.0225	0.0020	-	Yes
Chromium (Hex)	< 0.005	17	1.4	0.007	0.0160	0.0110	-	No RP*
Chromium (Total)	< 0.005	17	1.4	0.007	3.1884	0.3800	-	No RP*

With the second								
Copper	0.01	17	1.4	0.014	0.0357	0.0223	-	No RP*
Lead	< 0.005	17	1.4	0.007	0.2461	0.0516		No RP*
Nickel	0.006	17	1.4	0.0084	0.1546	0.0094	_	No RP*
Phenols	0.019	20	1.4	0.0266	-	-	0.1	No RP*
Silver	< 0.005	17	1.4	0.007	-	-	0.005	Yes
Zinc	0.034	17	1.4	0.0476	0.2291	0.0594	-	No RP*
Selenium	< 0.01	17	1.4	0.014	-	-	1.0	No RP*
Chloride	940	59	1.1	1034	-	•	500.0	Yes
Dichlorobromomethane**	0.001	20	1.4	0.0014	0.0100	0.0010	0.0149	Yes
Chlorodibromomethane**	0.005	20	1.4	0.007	-	_	0.0098	No RP*
Methylene chloride**	0.009	20	1.4	0.0126	17.0	1.4	0.49	No RP*
Tetrachloroethylene**	0.0095	20	1.4	0.0133	1.20	0.15	-	No RP*
1,1-Dichloroethylene**	0.0078	20	1.4	0.0109	3.0	0.24	0.11	No RP*
1,2-Dichloroethane**	0.0113	20	1.4	0.0158	25.0	4.5	0.023	No RP*
Vinyl chloride**	0.0069	20	1.4	0.0097	22.0	1.7	0.002	Yes
Trichloroethylene**	0.0192	20	1.4	0.0269	12.0	0.94	0.026	Yes
gamma-BHC**	0.00005	. 20	1.4	0.00007	0.00095	-	0.00002	Yes

^{*} No RP = no reasonable potential to exceed water quality standards.

Further Analysis:

Cadmium and Silver were not detected in any of the 17 samples. My conclusion is that no regulation of Cadmium and Silver is necessary and that no monitoring beyond the routine requirements is needed.

There is a reasonable potential to exceed the 302.208(g) water quality standard for Chloride. However, IMTT Illinois LLC, Lemont Facility timely filed a Time-Limited Water Quality Standard (TLWQS) for chloride (Case # PCB 2019-017) and is participating in the chloride workgroup for the CAWS dischargers. Since they timely filed, the chloride water quality standard is stayed.

There is no reasonable potential to exceed the acute or human health water quality criteria for Dichlorobromomethane. The average of the Dichlorobromomethane samples times the multiplier (0.000525 mg/L x 1.4 = 0.0007 mg/L) was less than the chronic water quality criteria. My conclusion is that no regulation of Dichlorobromomethane is necessary and that no monitoring beyond the routine requirements is needed.

There is no reasonable potential to exceed the acute or chronic water quality criteria for Vinyl Chloride. The average of the Vinyl Chloride samples times the multiplier (0.0022 mg/L x 1.4 = 0.0031 mg/L) was greater than the human health water quality criteria. My recommendation is that a limit for Vinyl Chloride should be incorporated into the NPDES permit at the human health water quality criteria.

There is no reasonable potential to exceed the acute or chronic water quality criteria for Trichloroethylene. The average of the Trichloroethylene samples times the multiplier (0.0035 mg/L x 1.4 = 0.00525 mg/L) was less than the human health water quality criteria. My conclusion is that no regulation of Trichloroethylene is necessary and that no monitoring beyond the routine requirements is needed.

^{**} derived water quality criteria.

The gamma-BHC value (0.00005 mg/L) reported by the discharger on the December 2014 DMR has been determined to be an outlier according to the procedure found in the 18th edition of Standard Methods. All other gamma-BHC values were reported as < 0.00005 mg/L. Therefore, there is no reasonable potential to exceed the acute and human health water quality criteria for gamma-BHC. My conclusion is that no regulation of gamma-BHC is necessary and that no monitoring beyond the routine requirements is needed.

Outfall 002

	Max. Eff.	No. of	Multiply	95%	Acute	Further
Substance	Conc.	Samples	by	Potential	Standard	Analysis?
Trichlorofluoromethane**	0.005	10	1.7	0.0085		No RP*
trans-1,3-Dichloropropene**	0.005	10	1.7	0.0085	-	No RP*
cis-1,3-Dichloropropene**	0.005	10	1.7	0.0085	0.0990	No RP*

^{*} No RP = no reasonable potential to exceed water quality standards.

Outfall 003

	Max. Eff.	No. of	Multiply	95%	Acute	Further
Substance	Conc.	Samples	by	Potential	Standard	Analysis?
Vinyl chloride**	0.005	10	1.7	0.00833	22.0	No RP*

^{*} No RP = no reasonable potential to exceed water quality standards.

Recommendations:

Attached is a copy of the Ammonia Worksheet used to derive the appropriate water quality based effluent limits based on 35 IAC Part 355.

Given the predicted ambient conditions of the I&M Canal near the outfall, as determined using data collected at AWQMN station H-01, Calumet-Sag Channel, N of Sag Bridge, monthly average limits of 3.2 mg/L (spring/fall), 2.3 mg/L (summer), and 5.6 mg/L (winter) are appropriate. The spring/fall, summer, and winter limits are based on 75th percentile pH.

Daily maximum limits of 15.0 mg/L (spring/fall), 15.0 mg/L (summer) and 15.0 mg/L (winter) are recommended. These limits reflect the seasonal acute water quality standards with no mixing allowance since the stream has no flow during 7Q10 conditions.

If applicable, weekly average limits of 7.9 mg/L (spring/fall), 5.8 mg/L (summer), and 14.0 mg/L (winter) are appropriate. These values are based on 2.5 times the chronic limit.

Temperature should continue to be regulated at the 35 Ill. Adm. Code 302.211 water quality standard.

All available data collected by the discharger and the Agency has been evaluated. Because of the number of parameters that were sampled for in the routine monitoring of the permit, those parameters that were not detected were not included in this memorandum.

^{**} derived water quality criteria.

^{**} derived water quality criteria.

My evaluation of the metals and other substances given in the first table (Outfall 001) finds that water quality-based permit limit is necessary for Vinyl Chloride at the limit below. Permit limits identified in the table are expressed in units of mg/L.

	12-month
Substance	rolling average
Vinyl Chloride	0.002

The NPDES permit should include a special condition stating the following:

IMTT Illinois LLC, Lemont Facility (IL0005126) timely filed a Time-Limited Water Quality Standard (TLWQS) for chloride (Case # PCB 2019-017) and is participating in the chloride workgroup for the CAWS dischargers. Since they timely filed, the chloride water quality standard is stayed. IMTT must continue to participate in the workgroup and must comply with the Board of resulting from the TLWQS (Case # PCB 2019-017).

These recommendations reflect a water quality standards perspective only and should not be construed as being inclusive of all factors that must be taken into consideration by the permit writer.

Attachment

cc: Des Plaines Regional Office – Surface Water Manager Chron

Tsai, Shu-Mei

From:

Twait, Scott

Sent:

Monday, July 15, 2019 2:50 PM

To:

Tsai, Shu-Mei

Subject:

IMTT - Illinois NPDES #IL0005126

I forgot to include a condition for continued monitoring for chloride in Outfall 001. The monitoring for chloride should continue.

Thanks, Scott

Scott Twait
Illinois Environmental Protection Agency
1021 North Grand Avenue East
P.O. Box 19276
Springfield, IL 62794-9276
217-782-3362
217-782-9891 (fax)

State of Illinois - CONFIDENTIALITY NOTICE: The information contained in this communication is confidential, may be attorney-client privileged or attorney work product, may constitute inside information or internal deliberative staff communication, and is intended only for the use of the addressee. Unauthorized use, disclosure or copying of this communication or any part thereof is strictly prohibited and may be unlawful. If you have received this communication in error, please notify the sender immediately by return e-mail and destroy this communication and all copies thereof, including all attachments. Receipt by an unintended recipient does not waive attorney-client privilege, attorney work product privilege, or any other exemption from disclosure.

Tsai, Shu-Mei

From:

Rousey, Michelle

Sent:

Tuesday, July 23, 2019 4:27 PM

To:

Tsai, Shu-Mei

Subject:

RE: IL0005126 IMTT

Iron can be collected as a grab or composite sample. Either way is acceptable.

Michelle Rousey
Quality Assurance Officer, Bureau of Water
Discharge Monitoring Report – QA Coordinator

Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 (Mail Code 15) Springfield, IL 62794-9276

(217) 785-3944 – phone Michelle.Rousey@illinois.gov

From: Tsai, Shu-Mei

Sent: Tuesday, July 23, 2019 3:49 PM

To: Rousey, Michelle < Michelle.Rousey@Illinois.gov>

Subject: IL0005126 IMTT

Michelle,

I want to check with you that can the permittee have composite sample type for Iron (total) or they only can have grab? Thanks

Shu-Mei Tsai,

Environmental Protection Engineer, Industrial Unit Permit Section Division of Water Pollution Control Illinois Environmental Protection Agency

ph: 217-782-0610 fax: 217-782-9891

Shu-Mei.Tsai@Illinois.gov

Electronic Filing: Received, Clerk's Office 05/20/2020

R 130

attorney-client privileged or attorney work product, may constitute inside information or internal deliberative staff communication, and is intended only for the use of the addressee. Unauthorized use, disclosure or copying of this communication or any part thereof is strictly prohibited and may be unlawful. If you have received this communication in error, please notify the sender immediately by return e-mail and destroy this communication and all copies thereof, including all attachments. Receipt by an unintended recipient does not waive attorney-client privilege, attorney work product privilege, or any other exemption from disclosure.

Electronic Filing: Received, Clerk's Office 05/20/2020

Thing. Recorded, Clorke Chice Co/20/20

R 131

Industrial NPDES Permit Review Notes

I. Permittee: IMTT Illinois, LLC. Permit No. IL0005126

Facility Name: IMTT Illinois, LLC. – Lemont Facility

City: Lemont County: Adam

Facility Contact: Larry Newton, Environmental Manager Phone No. (630) 257-3960

SIC Code: 4226

Category: Special Ware housing and Storage. Not Elsewhere Classified.

Major □ Minor ☑ New □ Reissue d ☑

Brief description of manufacturing operations and discharge sources:

The applicant is engaged in the operation of a for-hire leasing facility that is comprised of numerous storage tanks for on-shore bulk liquids storage and distribution (SIC 4226). Plant operation results in an average discharge of 0.238 MGD of combined effluent wastewater from outfall 001, 0.0015 MGD of treated sanitary wastewater from internal outfall A01, 0.0015 MGD of treated sanitary wastewater from internal outfall B01, 0.0008 MGD of treated remediation water from internal outfall C01, an intermittent discharge of stormwater runoff from outfall 003.

II. Application Requirements

✓ Form 1 §122.21(f)

☑ Form 2C §122.21(g)

☐ Form 2D §122.21(k)

✓ Form 2E §122.21(h)

✓ Form 2F §122.26(c)

☐ Variance Request §122.21(m)

☐ Cooling Water Intake Structure Data §122.21(r)

III. Federal Categorical Standards Apply: Yes ☑ No ☐

40 CFR 122.26(b)(14)(xi)

IV. Discharge Flow (mgd)

001	Combined Effluent Wastewater	(DAF = 0.238 MGD)
A01	Treated Sanitary Wastewater	(DAF = 0.015 MGD)
B01	Treated Sanitary Wastewater	(DAF = 0.015 MGD)
C01	Treated Remediation Water	(DAF = 0.0008 MGD)
002	Stormwater	(Intermittent Discharge)
003	Stormwater	(Intermittent Discharge)

Source of flow data: Previous Permit

If change from previous permit describe reason: N/A

V. Identification and Characterization of the Receiving Stream:

The subject facility discharges to the Illinois and Michigan Canal at a point where 0 cfs, via Outfalls 001 and 002, of flow exists upstream of the outfall during critical 7Q10 low-flow conditions. The Illinois and Michigan Canal is not listed as a biologically significant stream in the 2008 Illinois Department of Natura Resources Publication *Integrating Multiple Taxa in a Biological Stream Rating System*, nor is it given an integrity rating in that document. The Illinois and Michigan Canal, Waterbody Segment, GU, is not listed on the draft 2016 Illinois Integrated Water Quality Report and Section 303(d) List Since it has not been assessed. The Illinois and Michigan Canal is not subject to enhanced dissolved oxygen standards.

The subject facility discharges to the Calumet-Sag Channel at a point where 0 cfs, via Outfall 003, of flow exists upstream of the outfall during critical 7Q10 low-flow conditions. The Calumet-Sag Channel is not listed

IEPA Permit Reviewer: Shu-Mei Tsai Date: Tuesday, July 23. 2019

Permit No. IL0005126 Page 2 of 10

as a biological significant stream in the 2008 Illinois Department of Natural Resources Publication Integrating Multiple Taxa in a Biological Stream Rating System, nor is it given an integrity rating in that document. The Calumet-Sag Channel, Waterbody Segment, H-01, is listed on the draft 2016 Illinois Integrated Water Quality Report and Section 303(d) List. The Cal-Sag Channel is not subject to enhanced dissolved oxygen standards.

The following parameters have been identified as the pollutants causing impairment:

Ī	Designated Uses	Pollutants Causing Impairment
I	ndigenous Aquatic Life Use	Dissolved Oxygen (non-Pollutant), Iron, Phosphorus, and Total Suspended Solids (TSS).
F	Fish Consumption Use	Mercury and Polychlorinated Biphenyls (PCB's)
	Source of data:	n 2 - 1
	 ✓ Water Quality Based Ef Request Date: Wednes Received Date: Thursd ✓ Anti-degradation Assess Request Date: Received Date: ✓ Biomonitoring Request Date: Received Date: Received Date: 	day, October 10, 2018
VI.	Proposed Special Conditions ☐ Flow reporting ☐ pH limit/reporting ☐ Temperature limits ☐ Monitoring location ☐ DMR Submission ☐ Class K operator ☐ Water treatment additives ☐ BAT/BCT for Stormwater ☐ SWPPP ☐ No Exposure ☐ Re-opener ☐ TRC Additional Special Con	(All Stormwater is treated and subject to effluent limits) ditions
VII.	☐ SWIMRPC (Madison, Mo☐ Saline Valley Conservance☐ ORSANCO (If discharge to☐ Kentucky (If discharge the Mischarge	Kane, Will) n, Hamilton, Hardin, Jackson, Jefferson, Perry, Pope, Saline, Williamson) nroe, St. Clair, Washington) y District (Saline) to the Ohio River)

Electronic Filing: Received, Clerk's Of	ffice 05/20/2020	R 133	
	Permit No. IL0005	126 Page 3 of	10
(If discharge to the Wabash River)			

	☐ Indiana (If discharge to the Wabash River)		Permit No. 1L000512
VIII.	Permit Letters (15-Day) ☑ Permittee	8.	
	☑ USACE	*	
	☑ FOS		
	☐ USEPA (if Major)		
	☐ Fee Invoice (if New Permit)		

Permit No. IL0005126 Page 4 of 10

Treatment Types (Check all that apply)

Physical/Chemical Treatmen

Biological Treatment

Discharge Type

Sludge Management	Preliminary, Primary,
□1X Sorption	10 THE SECOND SE
□1W Solvent Extraction	☐6M Vegetative Filter
□2L Reduction	☐6L Two Stage Activated Sludge
☑2K Neutralization	☑3H Trickling Filtration
□10 Mixing	□3M Treatment by Plain Aeration
☑2J Ion Exchange	□8C Tertiary Treatment
□1K Gas Phase Separation	□3G Stabilization Ponds
□1J Freezing	□3F Spray Irrigation/Land Application
□ 11 Foam Fractionation	□8B Secondary Treatment
□1G Flocculation	□3I Rotating Biological Contractors
☑1F Evaporation	□6I Rock Filter
☐1E Electrodialysis	□3J Polishing Lagoons
□2I Electrochemical Treatment	☐8E Oxidation Pond or Ditch
□1D Distillation	□3D Nitrification – Denitrification.
□2H Disinfection (Other)	□3S 4 Cell Lagoon
□4I Disinfection (Ultraviolet)	□3R 3 Cell Lagoon
□2G Disinfection (Ozone)	□3Q 2 Cell Lagoon
☑2F Disinfection (Chlorine)	□3P 1 Cell Lagoon
□2E Dechlorination	□8D Lagoon(s)
□2D Coagulation	□8G Extended Aeration
□2C Chemical Precipitation	□8F Contact Stabilization
□2B Chemical Oxidation	□3K Biological Hydrolysis
□2N Chemical Hydrolysis	□3C Anaerobic Treament
□2A Carbon Absorption	☑3B Aerated Lagoons
□1A Ammonia Stripping	□3A Activated Sludge

Sludge Management	
Sludge Management □5A Aerobic Digestion □5B Anaerobic Digestion □5C Belt Filtration □5D Centrifugation □5E Chemical Conditioning □5F Chlorine Treatment □5G Composting □5H Drying Beds □5I Elutriation □5J Flotation Thickening □5K Freezing (Sludge Treatment) □5L Gravity Thickening □5M Heat Drying □5N Heat Treatment □5O Incineration □5P Land Application (Sludge) □5Q Landfill □6E Lime Stabilization □5R Pressure Filtration □5S Pyrolysis □5T Sludge Lagoons □6K Thermophilic Digestion □5U Vacuum Filtration □5V Vibration □5W Wet Air Oxidation	

Filtration, Other Treatment
□1C Diatomaceous .Earth Filtration
□1Y Equalization
□6A Excess Flow Treatment
□1H Flotation
□4H Grease Removal
□1L Grinding (Comminutors)
□1M Grit Removal
□3N Holding/Detention Pond
□6B Imhoff Tank
□1Z Intermittent Sand Filters
☐6C Irradiation/Beta Ray
□6D Irradiation/Gamma Ray
□1N Microstraining (Microscreening)
□ 1P Moving Bed Filters
□1Q Multimedia Filtration
□2M Odor Control
□6F Oil-Water Separator
□6G Pasteurization
□6H Phosphorus Removal
□3L Post Aeration
□3E Pre-Aeration
□8A Primary Treatment
□1R Rapid Sand Filtration
☑1S Reverse Osmosis
□1T Screening
☑1U Sedimentation
□1V Slow Sand Filtration
□4F Temperature Control
permany control

□8H Constructed Wetland
☑4A Discharge to Surface Water
□4B Ocean Discharge
□4C Reuse/Recycle-Treated Effluent
☐4E Reuse/Sale of Wastewater
□6J Subsurface Seepage
□4D Underground Injection

Electronic Filing: Received, Clerk's Office 05/20/2020 Permit No. IL0005126 Page 350f 10 Permit Limits Derivation - Outfall 001

Parameter – conc. · mass	Curren Average	nt Limits Maximum	Sec. 304 Average	4 Limits Maximum	Fed. Average	Limits* Maximum	W Average	QBEL Maxin	num	Prop Average	. Limits Maxim	Mon. Freq um Sample Typ	
Flow												1/Month	
pH (min. and max.)												Measuremer 1/Month Grab	35 IAC 302.204
BOD₅	30	60	6		40					30	60	1/Month Grab	35 IAC 304.120
Tempe ature												1/Month Single Readi	35 IAC 302.211
Total Residual Chlorine		0.05				0.05					0.05		35 IAC 302.208 40 CFR 125.3
Total Suspended Solids	30	60								30	60	Grab 1/Month Grab	35 IAC 304.120
Oil and Grease	15	30								15	30	1/Month	35 IAC 304.124
fron (Total)	2	4			IN.					2	4	Grab 1/Month	35 IAC 304.124
Barium	2	4								2	4	Composite 1/Month Grab	35 IAC 304.124
Chlorice												1/Month Grab	35 IAC 302.208(g)
Vinyl Chloride												1/Month Grab	35 IAC 302.208(g)
Ammor ia Spring/Fall Summer Winter			8				3.2 2.3 5.6	5.8	15.0 15.0 15.0	2.3	5.8 15	1/Month 5.0 5.0 5.0	35 IAC 302.212
Dissolved Oxygen March – July August – February		6 4 5.5			*						Grab	1/Month	35 IAC 302.206
Stormwater													40 CFR 122.26(b)(14)(xi)

There is no benchmark monitoring concentration for Sector P1: SIC - 4226 Motor Freight Transportation and Warehousing

Electronic Filing: Received, Clerk's Office 05/20/2020 Permit No. IL0005126 Pages of 10 Permit Limits Derivation – Outfall A01

Parameter – conc. mass	Curren Average	t Limits Maximum	Sec. 304 Average	Limits Maximum	Fed. Average	Limits* Maximum	W(Average	() BEL Maximum	Prop Average	. Limits Maximum	Mon. Freq Sample Type	Notes or . Comments
Flow											1/Month Grab	
pH (man. and max.)							6.5	9.0	6.5	9.0	1/Month Grab	35 IAC 302.204
BODs	30	60	30	60					30	60	1/Month Grab	35 IAC 304.120
Total Suspended Solids	30	60	30	60					30	60	1/Month Grab	35 IAC 304.120
Fecal Coliform		400/100		400/100						400/100	1/Month	35 IAC 302.209

Electronic Filing: Received, Clerk's Office 05/20/2020 Permit No. IL0005126 Page 37 of 10 Permit Limits Derivation – Outfall B01

Parameter – conc. mass	Current Average	t Limits Maximum	Sec. 304 Average	Limits Maximum	Fed. Average	Limits* Maximum	W(Average	QBEL Maximum	Prop. Average	Limits Maximum	Mon. Freq Sample Type	Notes or Comments
Flow											1/Week Continuous	
pH (m.n. and max.)									3		1/Month Grab	35 IAC 302.204
BOD₅	30	60	30	60					30	60 '	Glab	35 IAC 304.120
Total Suspended Solids	30	60	30	60					30	60		35 IAC 304.120
Fecal Coliform		400/100		400/100						400/100		35 IAC 302.209

Electronic Filing: Received, Clerk's Office 05/20/2020 Permit No. IL0005126 Prest38 of 10 Permit Limits Derivation – Outfall C01

Parameter – conc.	r - conc. Current Limits		Sec. 30	Sec. 304 Limits		Fed. Limits*		WQBEL		. Limits	Mon. Freq	Notes or	
mass	Average	Maximum	Average	Maximum	Average	Maximum	Average	Maximum	Average	Maximum	Sample Type	Comments	
Flow		1									1/Week Continuous	- 25	
Total Crganic Carbon											1/Month Grab	35 IAC 309.146	
1,2 Dichloroethane												35 IAC 309.146	

Electronic Filing: Received, Clerk's Office 05/20/2020 Permit No. IL0005126 Page 30 f 10 Permit Limits Derivation – Outfall 002

Pirameter - conc. mass

Current Limits Maximum Sec. 304 Limits

Fed. Limits*

WQBEL Average Maximum Average Maximum Average Maximum Average Maximum

Prop. Limits

Mon. Freq Sample Type

1/Week

Continuous

Notes or ' Comments

Flow

SWPPI

Volatile Organic Compounds

40 CFR 122.26(b)(14)(xi)

There is no benchmark monitoring concentration for Sector P1: SIC – 4226 Motor Freight Transportation and Warehousing

Electronic Filing: Received, Clerk's Office 05/20/2020 Permit No. IL0005126 Page 1400 of 10 Permit Limits Derivation - Outfall 003

Farameter - conc. mass

Current Limits Maximum Average

Sec. 304 Limits Maximum Average

Fed. Limits*

WQBEL Average Maximum Average Maximum Average Maximum

Prop. Limits

Mon. Freq Sample Type

Notes or ' Comments

Flow

SWPP.

1/Week Continuous

Volatile Organic Compounds

40 CFR 122.26(b)(14)(xi)

There is no benchmark monitoring concentration for Sector P1: SIC - 4226 Motor Freight Transportation and Warehousing

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 · (217) 782-3397 JB PRITZKER, GOVERNOR

JOHN J. KIM, DE RECTOR

MEMORANDUM

DATE: July 25, 2019

TO:

Manager, DWPC/FOS, Des Plaines Region

FROM:

Darin LeCrone, Manager, Industrial Unit, Permit Section

SUBJECT:

IMTT Illinois, LLC

Lemont Facility

NPDES Permit No. IL0005126 Bureau ID# W0311620009

Draft Permit, Public Notice/Fact Sheet

Please review the attached copy of the subject documents, and notify the Industrial Unit if you take exception to the limitations, sampling frequency, sample type or other requirements therein.

If no response is received within fifteen (15) days from the date of this memorandum, we will assume that you concur in the issuance of the Public Notice.

If you have any questions, please contact Shu-Mei Tsai at 217/782-0610.

Thank you for your cooperation.

DEL:SMT:18101001.smt

Attachments: Draft Permit, Public Notice/Fact Sheet

Records Unit cc:

Electronic Filing: Received, Clerk's Office 05/20/2020 R 142 ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 NORTH GRAND AVENUE EAST, P.O. Box 19276, Springfield, Illinois 62794-9276 · (217) 782-3397

JB PRITZKER, GOVERNOR

JOHN J. KIM, DI FRECTOR

217/782-0610

July 25, 2019

Department of the Army Chicago District Corps of Engineers 231 South LaSalle Street #1500 Chicago, Illinois 60604

Re:

IMTT Illinois, LLC

Lemont Facility

NPDES Permit No. IL0005126 Bureau ID# W0311620009

Request for Corps of Engineers Comment

Gentlemen:

Attached please find a copy of the Public Notice/Fact Sheet for the subject discharge. Please review for determination of the impact of this discharge on navigation and anchorage. If no written reply is received at the indicated address, attention: NPDES PN Clerk within 15 days of the date of this request, the Agency will assume the Corps of Engineers has no objection to the proposed discharge.

Sincerely,

Darin Le Crene / M

Manager, Industrial Unit, Permit Section Division of Water Pollution Control

DEL:SMT:18101001.smt

Attachment: Public Notice/Fact Sheet

cc: Records Unit

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 (217) 782-3397

JB PRITZKER, GOVERNOR

JOHN J. KIM, DI RECTOR

217/782-0610 July 25, 2019

IMTT Illinois LLC 13589 Main Street Lemont, Illinois 60439

Re:

IMTT Illinois LLC

Lemont Facility

NPDES Permit No. IL0005126 Bureau ID# W0311620009

Draft Permit

Gentlemen:

Attached to this letter is a copy of the draft Permit, Public Notice/Fact Sheet for your discharge. The Agency proposes to issue the NPDES Permit for your discharge as shown in the draft Permit.

Fifteen days from the date of this letter, the Agency proposes to distribute the attached Public Notice/Fact Sheet statewide. If you have objections to the content of the Public Notice/Fact Sheet, a written statement must be received by the Agency at the indicated address, attention: NPDES PN Clerk within 10 days.

The Agency will receive comments regarding the Permit for a period of 30 days after the Public Notice is issued. If you wish to comment or object to any of the terms and conditions of the Permit, you must state the objections in writing prior to the end of the public notice. The Agency may or may not change the Permit based on comments received from you or the public.

If you should have questions or comments regarding the above, please contact Shu-Mei Tsai at 217/782-0610.

Sincerely,

Darin LeCrone, P.E.

Manager, Industrial Unit, Permit Section Division of Water Pollution Control

Davin Le hone/AUK

DEL:SMT:18101001.smt

Attachments: Draft Permit, Public Notice/Fact Sheet

cc: Records Unit

Compliance Assurance Section

NPDES Permit No. IL0005126 Notice No. SMT:18101001.smt

Public Notice Beginning Date:

Public Notice Ending Date:

National Pollutant Discharge Elimination System (NPDES)
Permit Program

Draft Reissued NPDES Permit to Discharge into Waters of the State

Public Notice/Fact Sheet Issued By:

Illinois Environmental Protection Agency Bureau of Water Division of Water Pollution Control Permit Section 1021 North Grand Avenue East Post Office Box 19276 Springfield, Illinois 62794-9276 217/782-0610

Name and Address of Discharger:

Name and Address of Facility:

IMTT Illinois 13589 Main Street Lemont, Illinois 60439 IMTT Illinois – Lemont Facility 13589 Main Street Lemont, Illinois 60439 (Cook County)

The Illinois Environmental Protection Agency (IEPA) has made a tentative determination to issue a NPDES permit to discharge into the waters of the state and has prepared a draft permit and associated fact sheet for the above named discharger. The Public Notice period will begin and end on the dates indicated in the heading of this Public Notice/Fact Sheet. The last day comments will be received will be on the Public Notice period ending date unless a commentor demonstrating the need for additional time requests an extension to this comment period and the request is granted by the IEPA. Interested persons are invited to submit written comments on the draft permit to the IEPA at the above address. Commentors shall provide his or her name and address and the nature of the issues proposed to be raised and the evidence proposed to be presented with regards to those issues. Commentors may include a request for public hearing. Persons submitting comments and/or requests for public hearing shall also send a copy of such comments or requests to the permit applicant. The NPDES permit and notice number(s) must appear on each comment page.

The application, engineer's review notes including load limit calculations, Public Notice/Fact Sheet, draft permit, comments received, and other documents are available for inspection and may be copied at the IEPA between 9:30 a.m. and 3:30 p.m. Monday through Friday when scheduled by the interested person.

If written comments or requests indicate a significant degree of public interest in the draft permit, the permitting authority may, at its discretion, hold a public hearing. Public notice will be given 45 days before any public hearing. Response to comments will be provided when the final permit is issued. For further information, please call Shù-Mei Tsai at 217/782-0610.

The applicant is engaged in the operation of a for-hire leasing facility that is comprised of numerous storage tanks for on-shore bulk liquids storage and distribution (SIC 4226). Plant operation results in an average discharge of 0.238 MGD of combined effluent wastewater from outfall 001, 0.0015 MGD of treated sanitary wastewater from internal outfall A01, 0.0015 MGD of treated sanitary wastewater from internal outfall B01, 0.0008 MGD of treated remediation water from internal outfall C01, an intermittent discharge of stormwater runoff from outfall 002, and an intermittent discharge of stormwater runoff from outfall 003.

DRAFT

Public Notice/Fact Sheet -- Page 2 -- NPDES Permit No. IL0005126

Application is made for existing discharge which is located in Cook County, Illinois. The following information identifies the discharge point, receiving waters and waters classifications:

Outfall	Receiving Water	Latitude		Longitude		Waters Classification	Biological Waters Characterization
001	Illinois and Michigan Canal	41° 41' 36.59"	North	87° 57' 10.87"	West	General Use	Not Rated
002	Illinois and Michigan Canal	41° 41' 33.53"	North	87° 57' 19.62"	West	General Use	Not Rated
003	Calumet Sag Channel	41° 41' 36.24"	North	87° 56' 37.66"	West	Chicago Area Waterway System Aquatic Life Use A Water.	Not Rated

To assist you further in identifying the location of the discharge please see the attached map.

The subject facility discharges to the Illinois and Michigan Canal at a point where 0 cfs, via Outfalls 001 and 002, of flow exists upstream of the outfall during critical 7Q10 low-flow conditions. The Illinois and Michigan Canal is not listed as a biologically significant stream in the 2008 Illinois Department of Natura Resources Publication Integrating Multiple Taxa in a Biological Stream Rating System, nor is it given an integrity rating in that document. The Illinois and Michigan Canal, Waterbody Segment, GU, is not listed on the draft 2016 Illinois Integrated Water Quality Report and Section 303(d) List Since it has not been assessed. The Illinois and Michigan Canal is not subject to enhanced dissolved oxygen standards.

The subject facility discharges to the Calumet-Sag Channel at a point where 0 cfs, via Outfall 003, of flow exists upstream of the outfall during critical 7Q10 low-flow conditions. The Calumet-Sag Channel is not listed as a biological significant stream in the 2008 Illinois Department of Natural Resources Publication Integrating Multiple Taxa in a Biological Stream Rating System, nor is it given an integrity rating in that document. The Calumet-Sag Channel, Waterbody Segment, H-01, is listed on the draft 2016 Illinois Integrated Water Quality Report and Section 303(d) List. The Cal-Sag Channel is not subject to enhanced dissolved oxygen standards.

The following parameters have been identified as the pollutants causing impairment:

Designated Uses	Pollutants Causing Impairment
Indigenous Aquatic Life Use	Dissolved Oxygen (non-Pollutant), Iron, Phosphorus, and Total Suspended Solids (TSS).
Fish Consumption Use	Mercury and Polychlorinated Biphenyls (PCB's)

The discharges from the facility shall be monitored and limited at all times as follows:

Outfall 001 Combined Effluent Wastewater (DAF = 0.238 MGD)

	LOAD LIMI DAF (TS lbs/day DMF)		CONCEN LIMIT	*	
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	REGULATION	30 DAY AVERAGE	DAILY MAXIMUM	REGULATION
Flow (MGD)					9.00	
pH						35 IAC 302.204
BOD₅				30	60	35 IAC 304.120
Temperature					· <u>a</u>	35 IAC 302.211
Total Residual Chlorine					0.05	35 IAC 302.208 40 CFR 125.3
Total Suspended Solids	₹		· · · · · · · · · · · · · · · · · · ·	30	60	35 IAC 304.120

Electronic Filing: Received, Clerk's Office 05/20/2020

R 146

Public Notice/Fact Sheet -- Page 3 -- NPDES Permit No. IL0005126

		LOAD LIMITS lbs/day DAF (DMF)				NCENTRA LIMITS mo			
	PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	REGULATION	30 DAY	,	DAILY MAXIMUM	REGULATION	
	Oil and Grease			•	15		30	35 IAC 304.124	
	Iron (Total)		ş		2		4	35 IAC 304.124	
	Barium	ŭ.	165		2		4	35 IAC 304.124	
	Chloride			i fé	7	Monitor Or	nly	35 IAC 302.208(g)	
	Vinyl Chloride						0.002	35 IAC 302.208(g)	
	Ammonia	9		* * = =	30 day Average	Weekly Average	Daily Maximum	35 IAC 302.212	
	March – May September - October				3.2	7.9	15.0		
	June - August				2.3	5.8	15.0		
	November - February				5.6	14.0	15.0		
	Dissolved Oxygen		*		Monthly Average not less than	Weekly Average not less than	Daily Minimum	35 IAC 302.206	
	March – July				5	6	**		
	August – February			*	3.5	4	5.5		
	Stormwater	36° ×					40 (CFR 122.26(b)(14)(xi)	
			·					- 34	
	Outfall A01 Treated Sanitary	Wastewater	(DAF = 0.015	MGD)) (A				ž.
	Flow (MGD)			ž.					
	рН							35 IAC 302.204	
	BOD₅	3.75	7.50		30		60	35 IAC 304.120	
	Total Suspended Solids	3.75	7.50	<u>.</u> 3 • :	30		60	35 IAC 304.120	
	Fecal Coliform			0.0		4	400/100 ml	35 IAC 302.209	
								4	
	Outfall B01 Treated Sanitary	Wastewater	(DAF = 0.015	MGD)					
	Flow (MGD)			4. 16	3				
	рН							35 IAC 302.204	
	BOD₅	3.75	7.50		30		60	35 IAC 304.120	*
	Total Suspended Solids	3.75	7.50		30		60	35 IAC 304.120	
	Fecal Coliform		. 4		-		400/100 ml	35 IAC 302.209	
_									_

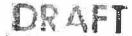
Electronic Filing: Received, Clerk's Office 05/20/2020

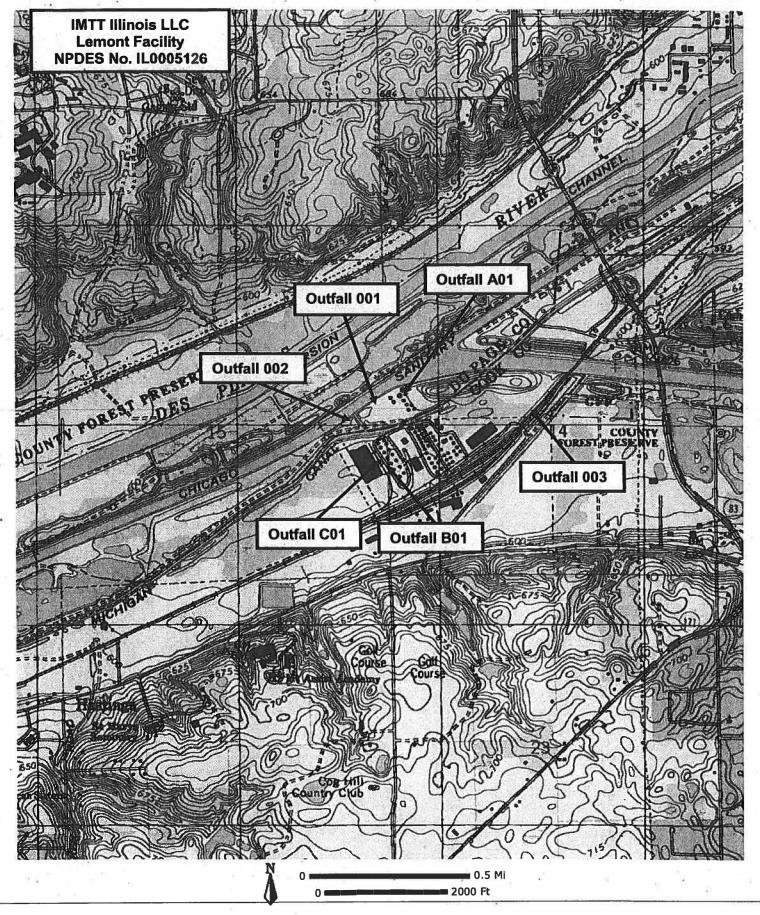
R 147

Public Notice/Fact Sheet -- Page 4 -- NPDES Permit No. IL0005126

	LOAD LIM DAF (•		CONCEN' LIMITS			
PARAMETER	30 DAY AVERAGE			30 DAY AVERAGE	DAILY MAXIMUM	REGULATION	
Outfall C01 Treated	Remediation W	ater (DAF = 0	.0008 MGD)				
Flow (MGD)	÷					\@	
Total Organic Carbon	F			Monito	r Only	35 IAC 309.146	
1,2 Dichloroethane				Monito	r Only	35 IAC 309.146	
Outfall 002 Stormwate	r (Intermittent	Discharge)					
Flow (MGD)					k .	±	
Volatile Organic Compou	nds			Monito	r Only	35 IAC 309.146	
Stormwater			2		40 CFR 12	22.26(b)(1 4)(xi)	
Outfall 003 Stormwater	(Intermittent Di	scharge)		× × .	4		
Flow (MGD) Volatile Organic Compou	nds		Y	Monito	or Only	35 IAC 309.146	
Stormwater					40	CFR 122.26(b)(14)(xi)	

Load Limit Calculations:


- A. Outfall A01, load limit calculations for the following pollutant parameters were based on a design average flow of 0.015 MGD and using the formula of average or maximum flow (MGD) X concentration limit (mg/l) X 8.34 = the average or maximum load limit (lbs/day): BOD₅ and Total Suspended Solids.
- B. Outfall B01, load limit calculations for the following pollutant parameters were based on a design average flow of 0.015 MGD and using the formula of average or maximum flow (MGD) X concentration limit (mg/l) X 8.34 = the average or maximum load limit (lbs/day): BOD₅ and Total Suspended Solids.


The load limits appearing in the permit will be the more stringent of the State and Federal Guidelines.

The following explain the conditions of the proposed permit:

The Special Conditions clarify flow, pH, temperature, Total Residual Chlorine, monitoring location, discharge monitoring report submission, Class K Operator, 126 priority pollutants, and stormwater.

Public Notice/Fact Sheet -- Page 5 -- NPDES Permit No. IL0005126

Illinois Environmental Protection Agency

Division of Water Pollution Control

1021 North Grand Avenue East

Post Office Box 19276

Springfield, Illinois 62794-9276

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

Reissued (NPDES) Permit

Expiration Date:

Issue Date: Effective Date: Modification Date:

Name and Address of Permittee:

Facility Name and Address:

IMTT Illinois 13589 Main Street Lemont, Illinois 60439 IMTT Illinois – Lemont Facility 13589 Main Street Lemont, Illinois 60439 (Cook County)

Discharge Number and Name:

Receiving Waters:

001 Combined Effluent Wastewater A01 Treated Sanitary Wastewater Illinois and Michigan Canal

B01 Treated Sanitary Wastewater C01 Treated Remediation Water

002 Stormwater Runoff

003 Stormwater Runoff

Illinois and Michigan Canal Calumet Sag Channel

In compliance with the provisions of the Illinois Environmental Protection Act, Title 35 of Ill. Adm. Code, Subtitle C and/or Subtitle D, Chapter 1, and the Clean Water Act (CWA), the above-named permittee is hereby authorized to discharge at the above location to the above-named receiving stream in accordance with the standard conditions and attachments herein.

Permittee is not authorized to discharge after the above expiration date. In order to receive authorization to discharge beyond the expiration date, the permittee shall submit the proper application as required by the Illinois Environmental Protection Agency (IEPA) not later than 180 days prior to the expiration date.

Darin E. LeCrone, P.E. Manager, Industrial Unit, Permit Section Division of Water Pollution Control

DEL:SMT:18101001.smt

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall 001 Combined Efflue	LOAD LIMITS lbs/day DAF (DMF)	CON	NCENTRATION LIMITS mg/L		
PARAMETER	30 DAY DAILY AVERAGE MAXIMUM	30 DAY AVERA	DAILY	SAMPLE FREQUENC	SAMPLE Y TYPE
The discharge consists of: 1. Boiler Blowdown 2. Water Softener Ba 3. Reverse Osmosis 4. Laboratory Waste 5. Treated Sanitary V 6. Safety Shower Te 7. Fire Hose Hydrost 8. Air Compressor C 9. Vehicle Washdow 10. Tank Hydrostatic	Reject Wastewater (A01 and B0* st Water tatic Water ooling Water n	1)			
11. Stormwater Runor12. Scrubber Water13. Remediation Water14. Tank Steam Cond	ff* er (C01)			* * * * * * * * * * * * * * * * * * * *	
	See Special Condition 1 See Special Condition 2		in R	1/Month	Measurement
BODs	ee opecial contaition 2	30	60	1/Month	Grab Grab

Flow (MGD)	See Special Collabor 1		141	16	Mission	Measurement
рН	See Special Condition 2				1/Month	Grab
BOD ₅	2 2	30		60	1/Month	Grab
Temperature	See Special Condition 3.				1/Month	Single Reading
Total Residual Chlorine	See Special Condition 4.	1, 8		0.05	1/Month	Grab
Total Suspended Solids		30	E	60	1/Month	Grab
Oil and Grease		15		30	1/Month	Grab
Iron (Total)		2		4	1/Month	Composite
Chloride	4		Monitor Only		1/Month	Grab
Vinyl Chloride			<u></u>	0.002	1/Month	Grab
Ammonia		30 Day Average	Weekly Average	Daily Maximum	1/Month	Grab
Spring/Fall		3.2	7.9	15.0		
Summer		2.3	5.8	15.0		
Winter		5.6	14.0	15.0	* *	
Dissolved Oxygen		Monthly Average not less than	Weekly Average not less than	Daily Minimum	1/Month	Grab
March - July		5	6			
August - February		3.5	4	<u>5.5</u>		

Stormwater

Page 3

NPDES Permit No. IL0005126

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall A01 Treated Sanitary Wastewater (D

(DAF = 0.015 MGD)

	LOAD LIMI <u>DAF (</u>			TRATION S mg/L			
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	20	SAMPLE TYPE
Flow (MGD)	See Special	See Special Condition 1.		- 100		Tic.	Measure
pH	See Special	Condition 2		10 E	1/Month		Grab
BOD₅	3.75	7.50	30	60	1/Month		Grab
Total Suspended Solids	3.75	7.50	30	60	1/Month		Grab
Fecal Coliform	See Special	Condition 5.		400/100 ml	1/Month		Grab

See Special Condition 13

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall B01 Treated Sanitary Wastewater (DAF = 0.015 MGD)

	LOAD LIMI DAF (ITS lbs/day. [DMF]		NTRATION S mg/L		
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	SAMPLE TYPE
Flow (MGD)	See Special	Condition 1.			1/Month	Measure
pH	See Special	Condition 2	1		1/Month	Grab
BOD₅	3.75	7.50	30	60	1/Month	Grab
Total Suspended Solids	3.75	7.50	30	60	1/Month	Grab
Fecal Coliform	See Special	Condition 5.		400/100 ml	1/ Month	Grab

See Special Condition 13

Page 5

DRAFT

NPDES Permit No. IL0005126

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall C01 Remediation Water* (DAF = 200 gpd)

		ITS lbs/day <u>(D</u> MF <u>)</u>		TRATION S mg/L			
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	Ş.	SAMPLE TYPE
Flow (MGD)	See Special	Condition 1.			1/Month ×	*2	Measure
pH	See Special	Condition 2		2	1/Month		Grab
Total Organic Carbon			Monito	or Only	1/Quarter**		Grab
1,2 Dichloroethane			Monito	or Only	1/Quarter**	8	Grab

^{* -} See Special Condition 14.

^{** -} See Special Condition 15.

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall 002 Stormwater (Intermittent Discharge)

er e v gw		fiTS ibs/day (DMF)	CONCEN <u>LIMIT</u>	TRATION S mg/i		
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	SAMPLE TYPE
Flow (MGD)	See Special C	Condition 1.			2/Year	Measure
Volatile Organic Compounds	See Special C	Condition 16.	Monito	or Only	2/Year	Grab
Stormwater	See Special C	Condition 12.				

Electronic Filing: Received, Clerk's Office 05/20/2020

Page 7

NPDES Permit No. IL0005126

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be mon itored and limited at all times as follows:

Outfall 003 Stormwater

(Intermittent Discharge)

LOAD LIMITS lbs/day DAF (DMF)

CONCENTRATION LIMITS mg/l

PARAMETER

30 DAY **AVERAGE**

DAILY . MAXIMUM 30 DAY

DAILY

SAMPLE FREQUENCY

SAMPLE **TYPE**

Flow (MGD)

See Special Condition 1.

AVERAGE

MAXIMUM

2/Year

Measure

Volatile Organic Compounds

See Special Condition 16.

Monitor Only

2/Year

Stormwater

See Special Condition 12.

Grab

Special Conditions

<u>SPECIAL CONDITION 1.</u> Flow shall be measured in units of Million Gallons per Day (MGD) and reported as a monthly average and a daily maximum on the Discharge Monitoring Report.

<u>SPECIAL CONDITION 2.</u> The pH shall be in the range 6.5 to 9.0. The monthly minimum and monthly maximum values shall be reported on the DMR form.

<u>SPECIAL CONDITION 3.</u> This facility is not allowed any mixing with the receiving stream in order to meet applicable water quality thermal limitations. Therefore, discharge of wastewater from this facility must meet the following thermal limitations prior to discharge into the receiving stream.

A. The discharge must not exceed the maximum limits in the following table during more than one percent of the hours in the 12 month period ending with any month. Moreover, at no time shall the water temperature of the discharge exceed the maximum limits in the following table by more the 1.7° C (3° F).

	Jan.	Feb.	Mar.	<u>April</u>	May	<u>June</u>	<u>July</u>	Aug.	Sept.	Oct.	Nov.	Dec.
۰F	60	60	60	90	90	90	90	90	90	90	90	60
°C	16	16	16	32	32	32	32	32	32	32	32	16

- B. In addition, the discharge shall not cause abnormal temperature changes that may adversely affect aquatic life unless caused by natural conditions.
- C. The discharge shall not cause the maximum temperature rise above natural temperatures to exceed 2.8° C (5° F).
- D. The monthly maximum value shall be reported on the DMR form.

<u>SPECIAL CONDITION 4.</u> All samples for Total Residual Chlorine shall be analyzed by an applicable method contained in 40 CFR 136, equivalent in accuracy to low-level amperometric titration. Any analytical variability of the method used shall be considered when determining the accuracy and precision of the results obtained.

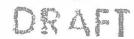
<u>SPECIAL CONDITION 5.</u> The daily maximum fecal coliform count shall not exceed 400 per 100 ml.

<u>SPECIAL CONDITION 6.</u> The Permittee shall record monitoring results on Discharge Monitoring Report (DMR) electronic forms using one such form for each outfall each month.

In the event that an outfall does not discharge during a monthly reporting period, the DMR Form shall be submitted with no discharge indicated.

The Permittee is required to submit electronic DMRs (NetDMRs) instead of mailing paper DMRs to the IEPA unless a waiver has been granted by the Agency. More information, including registration information for the NetDMR program, can be obtained on the IEPA website, https://www2.illinois.gov/epa/topics/water-quality/surface-water/netdmr/Pages/guick-answer-guide.aspx

The completed Discharge Monitoring Report forms shall be submitted to IEPA no later than the 25th day of the following month, unless otherwise specified by the permitting authority.


Permittees that have been granted a waiver shall mail Discharge Monitoring Reports with an original signature to the IEPA at the following address:

Illinois Environmental Protection Agency
Division of Water Pollution Control
Attention: Compliance Assurance Section, Mail Code # 19
1021 North Grand Avenue East
Post Office Box 19276
Springfield, Illinois 62794-9276

SPECIAL CONDITION7. The use or operation of this facility shall be by or under the supervision of a Certified Class K operator.

SPECIAL CONDITION 8. If an applicable effluent standard or limitation is promulgated under Sections 301(b)(2)(C) and (D), 304(b)(2), and 307(a)(2) of the Clean Water Act and that effluent standard or limitation is more stringent than any effluent limitation in the permit or controls a pollutant not limited in the NPDES Permit, the Agency shall revise or modify the permit in accordance with the more stringent standard or prohibition and shall so notify the permittee.

Special Conditions

<u>SPECIAL CONDITION 9.</u> The effluent, alone or in combination with other sources, shall not cause a violation of any applicable water quality standard outlined in 35 III. Adm. Code 302.

<u>SPECIAL CONDITION 10.</u> In the event the permittee shall require the use of water treatment additives other than those previously approved by the Agency, or if the permittee increases the feed rate or quantity of the additives used beyond what has previously been approved by the Agency, the permittee shall request a modification of this permit in accordance with the Standard Conditions - Attachment H.

<u>SPECIAL CONDITION 11.</u> Samples taken in compliance with the effluent monitoring requirements shall be taken at a point representative of the discharge, but prior to entry into the receiving stream.

SPECIAL CONDITION 12.

STORM WATER POLLUTION PREVENTION PLAN (SWPPP)

- A. A storm water pollution prevention plan shall be maintained by the permittee for the storm water associated with industrial activity at this facility. The plan shall identify potential sources of pollution which may be expected to affect the quality of storm water discharges associated with the industrial activity at the facility. In addition, the plan shall describe and ensure the implementation of practices which are to be used to reduce the pollutants in storm water discharges associated with industrial activity at the facility and to assure compliance with the terms and conditions of this permit. The permittee shall modify the plan if substantive changes are made or occur affecting compliance with this condition.
 - 1. Waters not classified as impaired pursuant to Section 303(d) of the Clean Water Act.

Unless otherwise specified by federal regulation, the storm water pollution prevention plan shall be designed for a storm event equal to or greater than a 25-year 24-hour rainfall event.

2. Waters classified as impaired pursuant to Section 303(d) of the Clean Water Act

For any site which discharges directly to an impaired water identified in the Agency's 303(d) listing, and if any parameter in the subject discharge has been identified as the cause of impairment, the storm water pollution prevention plan shall be designed for a storm event equal to or greater than a 25-year 24-hour rainfall event. If required by federal regulations, the storm water pollution prevention plan shall adhere to a more restrictive design criteria.

- B. The operator or owner of the facility shall make a copy of the plan available to the Agency at any reasonable time upon request.
 - Facilities which discharge to a municipal separate storm sewer system shall also make a copy available to the operator of the municipal system at any reasonable time upon request.
- C. The permittee may be notified by the Agency at any time that the plan does not meet the requirements of this condition. After such notification, the permittee shall make changes to the plan and shall submit a written certification that the requested changes have been made. Unless otherwise provided, the permittee shall have 30 days after such notification to make the changes.
- D. The discharger shall amend the plan whenever there is a change in construction, operation, or maintenance which may affect the discharge of significant quantities of pollutants to the waters of the State or if a facility inspection required by paragraph H of this condition indicates that an amendment is needed. The plan should also be amended if the discharger is in violation of any conditions of this permit, or has not achieved the general objective of controlling pollutants in storm water discharges. Amendments to the plan shall be made within 30 days of any proposed construction or operational changes at the facility, and shall be provided to the Agency for review upon request.
- E. The plan shall provide a description of potential sources which may be expected to add significant quantities of pollutants to storm water discharges, or which may result in non-storm water discharges from storm water outfalls at the facility. The plan shall include, at a minimum, the following items:
 - A topographic map extending one-quarter mile beyond the property boundaries of the facility, showing: the facility, surface
 water bodies, wells (including injection wells), seepage pits, infiltration ponds, and the discharge points where the facility's
 storm water discharges to a municipal storm drain system or other water body. The requirements of this paragraph may be
 included on the site map if appropriate. Any map or portion of map may be withheld for security reasons.
 - 2. A site map showing:
 - The storm water conveyance and discharge structures;
 - An outline of the storm water drainage areas for each storm water discharge point;

Special Conditions

- iii. Paved areas and buildings;
- iv. Areas used for outdoor manufacturing, storage, or disposal of significant materials, including activities that generate significant quantities of dust or particulates.
- v. Location of existing storm water structural control measures (dikes, coverings, detention facilities, etc.);
- vi. Surface water locations and/or municipal storm drain locations
- vii. Areas of existing and potential soil erosion;
- viii. Vehicle service areas;
- ix. Material loading, unloading, and access areas.
- x. Areas under items iv and ix above may be withheld from the site for security reasons.
- 3. A narrative description of the following:
 - The nature of the industrial activities conducted at the site, including a description of significant materials that are treated, stored or disposed of in a manner to allow exposure to storm water;
 - Materials, equipment, and vehicle management practices employed to minimize contact of significant materials with storm water discharges;
 - iii. Existing structural and non-structural control measures to reduce pollutants in storm water discharges;
 - iv. Industrial storm water discharge treatment facilities;
 - v. Methods of onsite storage and disposal of significant materials.
- 4. A list of the types of pollutants that have a reasonable potential to be present in storm water discharges in significant quantities. Also provide a list of any pollutant that is listed as impaired in the most recent 303(d) report.
- 5. An estimate of the size of the facility in acres or square feet, and the percent of the facility that has impervious areas such as pavement or buildings.
- 6. A summary of existing sampling data describing pollutants in storm water discharges.
- F. The plan shall describe the storm water management controls which will be implemented by the facility. The appropriate controls shall reflect identified existing and potential sources of pollutants at the facility. The description of the storm water management controls shall include:
 - Storm Water Pollution Prevention Personnel Identification by job titles of the individuals who are responsible for developing, implementing, and revising the plan.
 - 2. Preventive Maintenance Procedures for inspection and maintenance of storm water conveyance system devices such as oil/water separators, catch basins, etc., and inspection and testing of plant equipment and systems that could fail and result in discharges of pollutants to storm water.
 - Good Housekeeping Good housekeeping requires the maintenance of clean, orderly facility areas that discharge storm water.
 Material handling areas shall be inspected and cleaned to reduce the potential for pollutants to enter the storm water conveyance system.
 - 4. Spill Prevention and Response Identification of areas where significant materials can spill into or otherwise enter the storm water conveyance systems and their accompanying drainage points. Specific material handling procedures, storage requirements, spill cleanup equipment and procedures should be identified, as appropriate. Internal notification procedures for spills of significant materials should be established.
 - 5. Storm Water Management Practices Storm water management practices are practices other than those which control the source of pollutants. They include measures such as installing oil and grit separators, diverting storm water into retention basins, etc. Based on assessment of the potential of various sources to contribute pollutants, measures to remove pollutants from storm water discharge shall be implemented. In developing the plan, the following management practices shall be considered:

Special Conditions

- i. Containment Storage within berms or other secondary containment devices to prevent leaks and spills from entering storm water runoff. To the maximum extent practicable storm water discharged from any area whe re material handling equipment or activities, raw material, intermediate products, final products, waste materials, by-products, or industrial machinery are exposed to storm water should not enter vegetated areas or surface waters or infiltrate into the soil unless adequate treatment is provided.
- Oil & Grease Separation Oil/water separators, booms, skimmers or other methods to minimize oil contaminated storm water discharges.
- iii. Debris & Sediment Control Screens, booms, sediment ponds or other methods to reduce debris and sediment in storm water discharges.
- iv. Waste Chemical Disposal Waste chemicals such as antifreeze, degreasers and used oils shall be recycled or disposed of in an approved manner and in a way which prevents them from entering storm water discharges.
- v. Storm Water Diversion Storm water diversion away from materials manufacturing, storage and other areas of potential storm water contamination. Minimize the quantity of storm water entering areas where material handling equipment of activities, raw material, intermediate products, final products, waste materials, by-products, or industrial machinery are exposed to storm water using green infrastructure techniques where practicable in the areas outside the exposure area, and otherwise divert storm water away from exposure area.
- vi. Covered Storage or Manufacturing Areas Covered fueling operations, materials manufacturing and storage areas to prevent contact with storm water.
- vii. Storm Water Reduction Install vegetation on roofs of buildings within adjacent to the exposure area to detain and evapotranspirate runoff where precipitation falling on the roof is not exposed to contaminants, to minimize storm water runoff; capture storm water in devices that minimize the amount of storm water runoff and use this water as appropriate based on quality.
- 6. Sediment and Erosion Prevention The plan shall identify areas which due to topography, activities, or other factors, have a high potential for significant soil erosion. The plan shall describe measures to limit erosion.
- 7. Employee Training Employee training programs shall inform personnel at all levels of responsibility of the components and goals of the storm water pollution control plan. Training should address topics such as spill response, good housekeeping and material management practices. The plan shall identify periodic dates for such training.
- 8. Inspection Procedures Qualified plant personnel shall be identified to inspect designated equipment and plant areas. A tracking or follow-up procedure shall be used to ensure appropriate response has been taken in response to an inspection. Inspections and maintenance activities shall be documented and recorded.
- G. Non-Storm Water Discharge The plan shall include a certification that the discharge has been tested or evaluated for the presence of non-storm water discharge. The certification shall include a description of any test for the presence of non-storm water discharges, the methods used, the dates of the testing, and any onsite drainage points that were observed during the testing. Any facility that is unable to provide this certification must describe the procedure of any test conducted for the presence of non-storm water discharges, the test results, potential sources of non-storm water discharges to the storm sewer, and why adequate tests for such storm sewers were not feasible.
- H. Quarterly Visual Observation of Discharges The requirements and procedures for quarterly visual observations are applicable to all outfalls covered by this condition.
 - You must perform and document a quarterly visual observation of a storm water discharge associated with industrial activity
 from each outfall. The visual observation must be made during daylight hours. If no storm event resulted in runoff during
 daylight hours from the facility during a monitoring quarter, you are excused from the visual observations requirement for that
 quarter, provided you document in your records that no runoff occurred. You must sign and certify the document.
 - 2. Your visual observation must be made on samples collected as soon as practical, but not to exceed 1 hour or when the runoff or snow melt begins discharging from your facility. All samples must be collected from a storm event discharge that is greater than 0.1 inch in magnitude and that occurs at least 72 hours from the previously measureable (greater than 0.1 inch rainfall) storm event. The observation must document: color, odor, clarity, floating solids, settled solids, suspended solids, foam, oil sheen, and other obvious indicators of storm water pollution. If visual observations indicate any unnatural color, odor, turbidity, floatable material, oil sheen or other indicators of storm water pollution, the permittee shall obtain a sample and monitor for the parameter or the list of pollutants in Part E.4.
 - 3. You must maintain your visual observation reports onsite with the SWPPP. The report must include the observation date and time, impression personner, nature or me discharge (i.e., ranoff or snow melt), visual quality of the storm water discharge

Special Conditions

(including observations of color, odor, floating solids, settled solids, suspended solids, foam, oil sheen, and other obvious indicators of storm water pollution), and probable sources of any observed storm water contamination.

- 4. You may exercise a waiver of the visual observation requirement at a facility that is inactive or unstaffed, as long as there are no industrial materials or activities exposed to storm water. If you exercise this waiver, you must maintain a certification with your SWPPP stating that the site is inactive and unstaffed, and that there are no industrial materials or activities exposed to storm water.
- 5. Representative Outfalls If your facility has two or more outfalls that you believe discharge substantially identical effluents, based on similarities of the industrial activities, significant materials, size of drainage areas, and storm water management practices occurring within the drainage areas of the outfalls, you may conduct visual observations of the discharge at just one of the outfalls and report that the results also apply to the substantially identical outfall(s).
- 6. The visual observation documentation shall be made available to the Agency and general public upon written request.
- I. The permittee shall conduct an annual facility inspection to verify that all elements of the plan, including the site map, potential pollutant sources, and structural and non-structural controls to reduce pollutants in industrial storm water discharges are accurate. Observations that require a response and the appropriate response to the observation shall be retained as part of the plan. Records documenting significant observations made during the site inspection shall be submitted to the Agency in accordance with the reporting requirements of this permit.
- J. This plan should briefly describe the appropriate elements of other program requirements, including Spill Prevention Control and Countermeasures (SPCC) plans required under Section 311 of the CWA and the regulations promulgated there under, and Best Management Programs under 40 CFR 125.100.
- K. The plan is considered a report that shall be available to the public at any reasonable time upon request.
- L. The plan shall include the signature and title of the person responsible for preparation of the plan and include the date of initial preparation and each amendment thereto.
- M. Facilities which discharge storm water associated with industrial activity to municipal separate storm sewers may also be subject to additional requirement imposed by the operator of the municipal system

Construction Authorization

Authorization is hereby granted to construct treatment works and related equipment that may be required by the Storm Water Pollution Prevention Plan developed pursuant to this permit.

This Authorization is issued subject to the following condition(s).

- N. If any statement or representation is found to be incorrect, this authorization may be revoked and the permittee there upon waives all rights there under.
- O. The issuance of this authorization (a) does not release the permittee from any liability for damage to persons or property caused by or resulting from the installation, maintenance or operation of the proposed facilities; (b) does not take into consideration the structural stability of any units or part of this project; and (c) does not release the permittee from compliance with other applicable statutes of the State of Illinois, or other applicable local law, regulations or ordinances.
- P. Plans and specifications of all treatment equipment being included as part of the stormwater management practice shall be included in the SWPPP.
- Q. Construction activities which result from treatment equipment installation, including clearing, grading and excavation activities which result in the disturbance of one acre or more of land area, are not covered by this authorization. The permittee shall contact the IEPA regarding the required permit(s).

REPORTING

R. The facility shall submit an electronic copy of the annual inspection report to the Illinois Environmental Protection Agency at epa.npdes.inspection@illinois.gov. The report shall include results of the annual facility inspection which is required by Part I of this condition. The report shall also include documentation of any event (spill, treatment unit malfunction, etc.) which would require an inspection, results of the inspection, and any subsequent corrective maintenance activity. The report shall be completed and signed by the authorized facility employee(s) who conducted the inspection(s). The annual inspection report is considered a public document that shall be available at any reasonable time upon request.

Special Conditions

- S. The first report shall contain information gathered during the one year time period beginning with the effective date of coverage under this permit and shall be submitted no later than 60 days after this one year period has expired. Each subsequent report shall contain the previous year's information and shall be submitted no later than one year after the previous year's report was due.
- T. If the facility performs inspections more frequently than required by this permit, the results shall be included as a dditional information in the annual report.
- U. The permittee shall retain the annual inspection report on file at least 3 years. This period may be extended by request of the Illinois Environmental Protection Agency at any time.
- V. Annual inspection reports shall be submitted to one of the following addresses:
 - a. Electronic Quarterly Reposts should be submitted to

epa.indannualinsp@illinois.gov

b. If electronic submittal is unavailable, reports should be mailed to:

Illinois Environmental Protection Agency
Division of Water Pollution Control
Compliance Assurance Section, Mail Code #19
Annual Inspection Report
1021 North Grand Avenue East
Post Office Box 19276
Springfield, Illinois 62794-9276

- W. The permittee shall notify any regulated small municipal separate storm sewer owner (MS4 Community) that they maintain coverage under an individual NPDES permit. The permittee shall submit any SWPPP or any annual inspection to the MS4 community upon request by the MS4 community.
- <u>SPECIAL CONDITION 13.</u> Discharges from the sanitary waste treatment systems (Internal Outfalls A01 and B01) shall be sampled prior to entry into the on-site ditch tributary to the settling pond.

<u>SPECIAL CONDITION 14.</u> Discharges from the remediation system (Internal Outfall C01) shall be sampled prior to mixing with any other discharges associated with Outfall 001.

<u>SPECIAL CONDITION 15.</u> Sampling for Internal Outfall C01 shall occur at the same time as the sampling listed in Special Condition 12 and shall be submitted in accordance with Special Condition 12.

SPECIAL CONDITION 16. The permittee shall sample the effluent from Outfalls 002 and 003 on a semi-annual basis for all Volatile Organic Compounds covered by 40 CFR 136 Appendix A, Methods 624 and 625. All sample results shall be submitted on a semi-annual basis with the June and December Discharge Monitoring Reports to the address indicated in Special Condition 6.

If the results of this sampling indicate that additional monitoring requirements or limitations are necessary, the Agency may modify the permit following public notice and opportunity for comment.

<u>SPECIAL CONDITION 17.</u> IMTT Illinois LLC, Lemont Facility (IL0005126) timely filed a Time-Limited Water Quality Standard (TLWQS) for chloride (Case # PCB 2019-017) and is participating in the chloride workgroup for the CAWS dischargers. Since the permittee timely filed, the chloride water quality standard is stayed. IMTT must continue to participate in the workgroup and must comply with the Board Order resulting from the TLWQS (Case # PCB 2019-017).

Attach menoritronic Filing: Received & George Compting Con 2012 01/2012 0 combined of at least

Standard Conditions

Definitions

Act means the Illinois Environmental Protection Act, 415 ILCS 5 as Amended.

Agency means the Illinois Environmental Protection Agency.

Board means the Illinois Pollution Control Board.

Clean Water Act (formerly referred to as the Federal Water Pollution Control Act) means Pub. L 92-500, as amended. 33 U.S.C. 1251 et seq.

NPDES (National Pollutant Discharge Elimination System) means the national program for issuing, modifying, revoking and reissuing, terminating, monitoring and enforcing permits, and imposing and enforcing pretreatment requirements, under Sections 307, 402, 318 and 405 of the Clean Water Act.

USEPA means the United States Environmental Protection Agency.

Daily Discharge means the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in units of mass, the "daily discharge" is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurements, the "daily discharge" is calculated as the average measurement of the pollutant over the day.

Maximum Daily Discharge Limitation (daily maximum) means the highest allowable daily discharge.

Average Monthly Discharge Limitation (30 day average) means the highest allowable average of daily discharges over a calendar month, calculated as the sum of all daily discharges measured during a calendar month divided by the number of daily discharges measured during that month.

Average Weekly Discharge Limitation (7 day average) means the nighest allowable average of daily discharges over a calendar week, calculated as the sum of all daily discharges measured turing a calendar week divided by the number of daily discharges measured during that week.

Best Management Practices (BMPs) means schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the pollution of vaters of the State. BMPs also include treatment requirements, operating procedures, and practices to control plant site runoff, ipillage or leaks, sludge or waste disposal, or drainage from raw naterial storage.

lliquot means a sample of specified volume used to make up a otal composite sample.

irab Sample means an individual sample of at least 100 milliliters ollected at a randomly-selected time over a period not exceeding 5 minutes.

4-Hour Composite Sample means a combination of at least 8 ample aliquots of at least 100 milliliters, collected at periodic itervals during the operating hours of a facility over a 24-hour eriod.

sample aliquots of at least 100 milliliters, collected at periodi intervals during the operating hours of a facility over an 8-houperiod.

Flow Proportional Composite: Sample means a combination of sample aliquots of at least 100 milliliters collected at periodic intervals such that either the time interval between each aliquot of the volume of each aliquot is proportional at the time of sampling or the total stream flow since the collection of the previous aliquot.

- (1) Duty to comply. The permittee must comply with all conditions of this permit. Any permit noncomplance constitutes a violation of the Act and is grounds for enforcement action, permit termination, revocation and reissuance, modification, or for densital of a permit renewal application. The permittee shall compaly with effluent standards or prohibitions established under Section 307(a) of the Clean Water Act for toxic pollutants within the time provided in the regulations that establish these standards or prohibitions, even if the permit has not yet been modified to incorporate the requirements.
- (2) Duty to reapply. If the permittee wish es to continue an activity regulated by this permit after the explication date of this permit, the permittee must apply for and obtain a new permit. If the permittee submits a proper application as required by the Agency no later than 180 days prior to the expiration date, this permit shall continue in full force a and effect until the final Agency decision on the application has been made.
- (3) Need to halt or reduce activity not a defense. It shall not be a defense for a permittee in an enforce ment action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
- (4) Duty to mitigate. The permittee shall take all reasonable steps to minimize or prevent any discharge in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.
- (5) Proper operation and maintenance. The permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the permittee to achieve compliance with conditions of this permit. Proper operation and maintenance includes effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate quality assurance procedures. This provision requires the operation of back-up, or auxiliary facilities, or similar systems only when necessary to achieve compliance with the conditions of the permit.
- (6) Permit actions. This permit may be modified, revoked and reissued, or terminated for cause by the Agency pursuant to 40 CFR 122.62 and 40 CFR 122.63. The filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- (7) Property rights. This permit does not convey any property rights of any sort, or any exclusive privilege.
- (8) Duty to provide information. The permittee shall furnish to the Agency within a reasonable time, any information which the Agency may request to determine whether cause exists for modifying reveking and reissuing, or terminating this permit, or to determine compliance with the permit. The nemittee shall also furnish to the Agency upon request, copies of records required to be kept by this permit.

(9) Inspection and entry. The permittee shall allow an authorized of Clerk's Office 05/20/2020 made in Writing by a person. representative of the Agency or USEPA (including an authorized contractor acting as a representative of the Agency or USEPA), upon the presentation of credentials and other documents as may be required by law, to:

(a) Enter upon the permittee's premises where a regulated facility or activity is located or conducted, or where records

must be kept under the conditions of this permit;

(b) Have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit:

(c) Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this permit; and

Sample or monitor at reasonable times, for the purpose of assuring permit compliance, or as otherwise authorized by the Act, any substances or parameters at any location.

(10) Monitoring and records.

(a) Samples and measurements taken for the purpose of monitoring shall be representative of the monitored

activity.

- The permittee shall retain records of all monitoring information, including all calibration and maintenance records, and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit, for a period of at least 3 years from the date of this permit, measurement, report or application. Records related to the permittee's sewage sludge use and disposal activities shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503). This period may be extended by request of the Agency or USEPA at any
- (c) Records of monitoring information shall include:
 - (1) The date, exact place, and time of sampling or measurements;
 - The individual(s) who performed the sampling or measurements;
 - The date(s) analyses were performed;
 - (4) The individual(s) who performed the analyses;
 - (5) The analytical techniques or methods used; and
 - (6) The results of such analyses.
- (d) Monitoring must be conducted according to test procedures approved under 40 CFR Part 136, unless other test procedures have been specified in this permit. Where no test procedure under 40 CFR Part 136 has been approved, the permittee must submit to the Agency a test method for approval. The permittee shall calibrate and perform maintenance procedures on all monitoring and analytical Instrumentation at intervals to ensure accuracy of measurements.
- (11) Signatory requirement. All applications, reports or information submitted to the Agency shall be signed and certified.
 - (a) Application. All permit applications shall be signed as follows:
 - (1) For a corporation: by a principal executive officer of at least the level of vice president or a person or overall responsibility · having environmental matters for the corporation:
 - (2) For a partnership or sole proprietorship: by a general partner or the proprietor, respectively; or
 - (3) For a municipality, State, Federal, or other public agency: by either a principal executive officer or ranking elected official.
 - All reports required by permits, or other information requested by the Agency shall be signed by a person described in paragraph (a) or by a utility autitorized representative of that person. A person is a duly -----tative only if

described in paragraph (a); and (2) The authorization specifies either an individual or a position responsible for the overall operation of the facility, from which the discharge originates, such as a plant manager, superintendent or person of equivalent responsibility; and

The written authorization is submitted to the Agency.

Changes of Authorization. If an authorization under (b) is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization satisfying the requirements of (b) must be submitted to the Agency prior to or together with any reports, information, or applications to be signed by an authorized representative.

(d) Certification. Any person signing a document under paragraph (a) or (b) of this section shall make the

following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

(12) Reporting requirements.

(a) Planned changes. The permittee shall give notice to the Agency as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required when:

(1) The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source pursuant to 40 CFR 122.29

(b); or

(2) The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants which are subject neither to effluent limitations in the permit, nor to notification requirements pursuant to

40 CFR 122.42 (a)(1).

- (3) The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit including notification of additional use or disposa sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- (b) Anticipated noncompliance. The permittee shall give advance notice to the Agency of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements.

(c) Transfers. This permit is not transferable to any perso except after notice to the Agency.

Compliance schedules. Reports of compliance of noncompliance with, or any progress reports on, interior and final requirements contained in any complianc schedule of this permit shall be submitted no later than 1 days following each schedule date.

(e) Monitoring reports. Monitoring results shall be reporte at the intervals specified elsewhere in this permit.

(1) Monitoring results must be reported on a Discharg Monitoring Report (DMR).

frequently than required by the permit, using test (1) Bypass is prohibited, procedures approved under 40 CFR 136 or as specified in the permit, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR.

Calculations for all limitations which require averaging of measurements shall utilize an arithmetic mean unless otherwise specified by the Agency in

Twenty-four hour reporting. The permittee shall report any noncompliance which may endanger health or the environment. Any information shall be provided orally within 24-hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of noncompliance and its cause; the period noncompliance, including exact dates and time; and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance. The following shall be included as information which must be reported within 24-hours:

(1) Any unanticipated bypass which exceeds any

effluent limitation in the permit.

(2) Any upset which exceeds any effluent limitation in

the permit.

(3) Violation of a maximum daily discharge limitation for any of the pollutants listed by the Agency in the permit or any pollutant which may endanger health or the environment.

The Agency may waive the written report on a caseby-case basis if the oral report has been received

within 24-hours.

Other noncompliance. The permittee shall report all Instances of noncompliance not reported under paragraphs (12) (d), (e), or (f), at the time monitoring reports are submitted. The reports shall contain the information listed in paragraph (12) (f).

Other information. Where the permittee becomes aware that it falled to submit any relevant facts in a permit application, or submitted incorrect information in a permit application, or in any report to the Agency, it shall

promptly submit such facts or information.

Bypass. 13)

(a) Definitions.

(1) Bypass means the intentional diversion of waste streams from any portion of a treatment facility.

(2) Severe property damage means substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.

(b) Bypass not exceeding limitations. The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is essential maintenance to assure efficient operation. These bypasses are not subject to the

provisions of paragraphs (13)(c) and (13)(d).

(c) Notice.

(1) Anticipated bypass. If the permittee knows in advance of the need for a bypass, it shall submit prior notice, if possible at least ten days before the date of the hypass.

(2) Unanticipated bypass. The permittee shall submit notice of an unanticipated bypass as required in paragraph (12)(f) (24-hour notice).

R 166 (1) Bypass is prohibited, and the Agency may tal enforcement action against a permittee fi

bypass, unless:

(i) Bypass was unavoidable to prevent loss of life personal injury, or se vere property damage;

There were no fea sible alternatives to th bypass, such as the use of auxiliary treatmer facilities, retention of untreated wastes, c maintenance during normal periods (equipment downtime. This condition is no satisfied if adequate back-up equipment should have been installe d in the exercise o reasonable engineeriang judgment to prevent a bypass which occurred during normal periods equipment downtime or preventive maintenance; and

(iii) The permittee submitted notices as required

under paragraph (13)(c).

(2) The Agency may approve an anticipated bypass, after considering its adverse effects, if the Agency determines that it will neet the three conditions listed above in paragrap (13)(d)(1).

(14) Upset.

(a) Definition. Upset means an exceptional incident in which there is unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include non compliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.

(b) Effect of an upset. An upset constitutes an affirmative defense to an action broughtfor moncompliance with such technology based permit effluent limitations if the requirements of paragraph (14)(c) are met. determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative

action subject to judicial review. (c) Conditions necessary for a demonstration of upset. A permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed,

contemporaneous operating logs, or other relevant evidence that:

(1) An upset occurred and that the permittee can identify the cause(s) of the upset;

(2) The permitted facility was at the time being properly

operated; and

(3) The permittee submitted notice of the upset as required in paragraph (12)(f)(2) (24-hour notice).

(4) The permittee complied with any remedial measures

required under paragraph (4).

(d) Burden of proof. In any enforcement proceeding the permittee seeking to establish the occurrence of an upset has the burden of proof.

Permits may be transferred by Transfer of permits. modification or automatic transfer as described below:

(a) Transfers by modification. Except as provided in paragraph (b), a permit may be transferred by the permittee to a new owner or operator only if the permit has been modified or revoked and reissued pursuant to 40 CFR 122.62 (b) (2), or a minor modification made pursuant to 40 CFR 122.63 (d), to identify the new permittee and incorporate such other requirements as may be necessary under the Clean Water Pot.

(b) Automatic transfers. As an alternative to transfers under paragraph (a), any NODES permit may be automatically

transferred to a new permittee if:

days in advance of the proposed transfer date;

(2) The notice includes a written agreement between the existing and new permittees containing a specified date for transfer of permit responsibility, coverage and liability between the existing and new permittees; and

(3) The Agency does not notify the existing permittee and the proposed new permittee of its intent to modify or revoke and reissue the permit. If this notice is not received, the transfer is effective on the date specified in the agreement.

- (16) All manufacturing, commercial, mining, and silvicultural dischargers must notify the Agency as soon as they know or have reason to believe:
 - (a) That any activity has occurred or will occur which would result in the discharge of any toxic pollutant identified under Section 307 of the Clean Water Act which is not limited in the permit; if that discharge will exceed the highest of the following notification levels:

(1) One hundred micrograms per liter (100 ug/l);

Two hundred micrograms per liter (200 ug/l) for acrolein and acrylonitrile; five hundred micrograms per liter (500 ug/l) for 2,4-dinitrophenol and for 2methyl-4,6 dinitrophenol; and one milligram per liter (1 mg/l) for antimony.

(3) Five (5) times the maximum concentration value reported for that pollutant in the NPDES permit

application; or

(4) The level established by the Agency in this permit.

- (b) That they have begun or expect to begin to use or manufacture as an intermediate or final product or byproduct any toxic pollutant which was not reported in the NPDES permit application.
- (17) All Publicly Owned Treatment Works (POTWs) must provide adequate notice to the Agency of the following:
 - (a) Any new introduction of pollutants into that POTW from an indirect discharge which would be subject to Sections 301 or 306 of the Clean Water Act if it were directly discharging those pollutants; and

(b) Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of

issuance of the permit.

- (c) For purposes of this paragraph, adequate notice shall include information on (i) the quality and quantity of effluent introduced into the POTW, and (ii) any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.
- (18) If the permit is issued to a publicly owned or publicly regulated treatment works, the permittee shall require any industrial user of such treatment works to comply with federal requirements concerning:

(a) User charges pursuant to Section 204 (b) of the Clean Water Act, and applicable regulations appearing in 40

- (b) Toxic pollutant effluent standards and pretreatment standards pursuant to Section 307 of the Clean Water
- Inspection, monitoring and entry pursuant to Section 308 of the Clean Water Act.
- (19) If an applicable standard or limitation is promulgated under Section 301(b)(2)(C) and (D), 304(b)(2), or 307(a)(2) and that effluent standard or limitation is more stringent than any effluent limitation in the permit, or controls a pollutant not limited in the permit, the permit shall be promptly modified or nevolited, and reissued to conform to that effluent standard or limitation.

- (1) The current permitted transion Filippi Received, Clerkasy Office 2015/20/2012 issued 167 the permittee. pursuant to 35 Ill. Adm. Code 309.154 is hereby incorporated by reference as a condition of this permit.
 - (21) The permittee shall not make any false statement, representation or certification in any application, record, report, plan or other document submitted to the Agency or the USEPA, or required to be maintained under this permit.
 - (22) The Clean Water Act provides that any person who violates a permit condition implementing Sections 301, 302, 306, 307, 308, 318, or 405 of the Clean Water Act is subject to a civil penalty not to exceed \$25,000 per day of such violation. Any person who willfully or negligently violates permit conditions implementing Sections 301, 302, 306, 307, 308, 318 or 405 of the Clean Water Act is subject to a fine of not less than \$2,500 nor more than \$25,000 per day of violation, or by imprisonment for not more than one year, or both. Additional penalties for violating these sections of the Clean Water Act are identified in 40 CFR 122.41 (a)(2) and (3).
 - (23) The Clean Water Act provides that any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit shall, upon conviction, be punished by a fine of not more than \$10,000, or by imprisonment for not more than 2 years, or both. If a conviction of a person is for a violation committed after a first conviction of such person under this paragraph, punishment is a fine of not more than \$20,000 per day of violation, or by imprisonment of not more than 4 years, or both.
 - (24) The Clean Water Act provides that any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or non-compliance shall, upon conviction, be punished by a fine of not more than \$10,000 per violation, or by imprisonment for not more than 6 months per violation, or by both.
 - (25) Collected screening, slumes, sludges, and other solids shall be disposed of in such a manner as to prevent entry of those wastes (or runoff from the wastes) into waters of the State. The proper authorization for such disposal shall be obtained from the Agency and is incorporated as part hereof by reference.
 - (26) In case of conflict between these standard conditions and any other condition(s) included in this permit, the other condition(s) shall govern.
 - (27) The permittee shall comply with, in addition to the requirements of the permit, all applicable provisions of 35 III Adm. Code, Subtitle C, Subtitle D, Subtitle E, and all applicable orders of the Board or any court with jurisdiction.
 - (28) The provisions of this permit are severable, and if an provision of this permit, or the application of any provision of this permit is held invalid, the remaining provisions of thi permit shall continue in full force and effect.

(Rev. 7-9-2010 bah)

R 108 Mt

MTT-Illinois

A PARTNERSHIP

Lemont Facility 13589 Main Street Lemont, IL 60439 Phone (630) 257-6222 Fax (630) 257-7135 Joliet Facility 24420 W. Durkee Road Channahon, iL 60410 Phone (815) 423-2500 Fax (815) 423-2525

PREMED

4116 0 2 2019

HEPAICAS

July 31, 2019

Illinois Environmental Protection Agency Bureau of Water Division of Water Pollution Control Attn: NPDES PN Clerk 1021 North Grand Ave East PO 19276 Springfield IL 62794-9276

Re:

IMTT Illinois LLC Lemont Facility

NPDES Permit No. IL0005126 Bureau ID # W0311620009

Draft Permit

Gentlemen:

I have reviewed the draft NPDES permit referenced above that we've recently received. IMTT Illinois respectfully objects to the inclusion in the draft permit of the vinyl chloride concentration limit of 0.002 mg/L as a daily maximum limit.

The regulation stated as justification in the draft permit for inclusion of this parameter is 35 IAC 302.208(g). However, vinyl chloride is not listed as a constituent of concern in that section of the administrative code. In fact, I cannot find any reference to vinyl chloride in this section of the code. Therefore, I do not believe it is appropriate or necessary to include this parameter's concentration limit in the final permit.

I would be happy to discuss this issue further, should you wish to comment. I can be reached by phone at 630-257-3960 or by email at larrynewton@imtt.com and I look forward to hearing from you.

Sincerely

Larry Newton

Environmental Manager

RECEIVED AUG 2 0 2019

IEPA
BOW/WPC/PERMIT SECTION

STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

Permittee: IMTT Illinois - Lemont Facility

Page 1 of 1

Permit: IL0005126

Reviewed By: Shu-Mei Tsai

Date: Friday, August 16, 2019

15-Day Notice Review Notes:

The Agency did not receive any comments during the 15-Day Notice Period.

Action:

Issue Draft Permit/Fact Sheet for 30-day Public Notice.

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 (217) 782-3397

JB PRITZKER, GOVERNOR

JOHN J. KIM, DI RECTOR

217/782-0610

August 20, 2019

IMTT Illinois, LLC 13589 Main Street Lemont, Illinois 60439

Re:

IMTT Ilinois, LLC

Lemont Facility

NPDES Permit No. IL0005126 Bureau ID# W0311620009

Public Notice Permit

Gentlemen:

Please post the attached Public Notice for the subject discharge for at least a period of thirty days from the date on the Notice in a conspicuous place on your premises.

We have enclosed a copy of the draft NPDES permit on which this official Public Notice is based. If you wish to comment on the draft permit, please do so within 30 days of the Public Notice date. If there are any questions, please contact Shu-Mei Tsai at 217/782-0610 or the address listed above.

Thank you for your cooperation.

Sincerely,

Parin C. Le Crane/MIL
Darin LeCrone, P.E.

Manager, Industrial Unit, Permit Section Division of Water Pollution Control

DEL:SMT:18101001.smt

Attachments: Draft Permit, Public Notice/Fact Sheet

cc: Records Unit

Compliance Assurance Section

Des Plaines Region

CMAP DRSCW 1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 · (217°) 782-3397

JB PRITZKER, GOVERNOR

JOHN J. KIM, DIRECTOR

217/782-0610

August 20, 2019

Municipal Clerk 418 Main Street Lemont, Illinois 60439

Re:

IMTT Illinois, LLC

Lemont Facility

NPDES Permit No. IL0005126 Bureau ID# W0311620009 Public Notice of Permit

Municipal Clerk:

In accordance with the requirements of the Illinois Pollution Control Board regulations of 35 Ill. Adm. Code 309.109(a)(2)(A), the attached National Pollutant Discharge Elimination System Public Notice is sent to a municipality in the vicinity of the applicant. The Agency understands that the applicant may not be associated with the municipality to which it is sent.

Please post the attached National Pollutant Discharge Elimination System Public Notice for a period of 30 days. In addition, please complete and return the enclosed postcard indicating the date of posting. Should you choose not to post the attached notice, please indicate so on the postcard and return.

Thank you for your cooperation.

Sincerely,

Davin E. Le Crone/Age Darin LeCrone, P.E.

Manager, Industrial Unit, Permit Section

Division of Water Pollution Control

DEL:SMT:18101001.smt

Attachments: Public Notice/Fact Sheet, Post Card

cc: Records Unit

lequindiis Envrion Mentali Profeeron Agency

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 · (217) 782-3397

JB PRITZKER, GOVERNOR

JOHN J. KIM, DIRECTOR

217/782-0610

August 20, 2019

Mr. Edward Karecki
U.S. Fish & Wildlife Service
Chicago Illinois Field Office
230 South Dearborn Street, Suite 2938
Chicago, Illinois 60604

Re:

IMTT Illinois, LLC

Lemont Facility

NPDES Permit No. IL0005126 Bureau ID# W0311620009

Gentlemen:

In accordance with 40 CFR 124.10, we hereby submit a copy of the Public Notice/Fact Sheet for the above discharger. If no written reply is received at the indicated address, attention: NPDES PN Clerk within 30 days of the date of this request, the Agency will assume that the U.S. Fish and Wildlife Service has no objection to the proposed discharge.

Sincerely,

Davin E. Le Crone/14k

Manager, Industrial Unit, Permit Section Division of Water Pollution Control

DEL:SMT:18101001.smt

Attachment: Public Notice/Fact Sheet

cc: Records Unit

NPDES Permit No. IL0005126 Notice No. SMT:18101001.smt

Public Notice Beginning Date: August 20, 2019

Public Notice Ending Date: September 19, 2019

National Pollutant Discharge Elimination System (NPDES)
Permit Program

Draft Reissued NPDES Permit to Discharge into Waters of the State

Public Notice/Fact Sheet Issued By:

Illinois Environmental Protection Agency Bureau of Water Division of Water Pollution Control Permit Section 1021 North Grand Avenue East Post Office Box 19276 Springfield, Illinois 62794-9276. 217/782-0640

Name and Address of Discharger:

IMTT Illinois 13589 Main Street Lemont, Illinois 60439 Name and Address of Facility:

IMTT Illinois - Lemont Facility 13589 Main Street Lemont, Illinois 60439 (Cook County)

The Illinois Environmental Protection Agency (IEPA) has made a tentative determination to issue a NPDES permit to discharge into the waters of the state and has prepared a draft permit and associated fact sheet for the above named discharger. The Public Notice period will begin and end on the dates indicated in the heading of this Public Notice/Fact Sheet. The last day comments will be received will be on the Public Notice period ending date unless a commentor demonstrating the need for additional time requests an extension to this comment period and the request is granted by the IEPA. Interested persons are invited to submit written comments on the draft permit to the IEPA at the above address. Commentors shall provide his or her name and address and the nature of the issues proposed to be raised and the evidence proposed to be presented with regards to those issues. Commentors may include a request for public hearing. Persons submitting comments and/or requests for public hearing shall also send a copy of such comments or requests to the permit applicant. The NPDES permit and notice number(s) must appear on each comment page.

The application, engineer's review notes including load limit calculations, Public Notice/Fact Sheet, draft permit, comments received, and other documents are available for inspection and may be copied at the IEPA between 9:30 a.m. and 3:30 p.m. Monday through Friday when scheduled by the interested person.

If written comments or requests indicate a significant degree of public interest in the draft permit, the permitting authority may, at its discretion, hold a public hearing. Public notice will be given 45 days before any public hearing. Response to comments will be provided when the final permit is issued. For further information, please call Shu-Mei Tsai at 217/782-0610.

The applicant is engaged in the operation of a for-hire leasing facility that is comprised of numerous storage tanks for on-shore bulk liquids storage and distribution (SIC 4226). Plant operation results in an average discharge of 0.238 MGD of combined effluent wastewater from outfall 001, 0.0015 MGD of treated sanitary wastewater from internal outfall A01, 0.0015 MGD of treated sanitary wastewater from internal outfall B01, 0.0008 MGD of treated remediation water from internal outfall C01, an intermittent discharge of stormwater runoff from outfall 002, and an intermittent discharge of stormwater runoff from outfall 003.

Public Notice/Fact Sheet - Page 2 -- NPDES Permit No. IL0005126

Application is made for existing discharge which is located in Cook County, Illinois. The following information identifies the discharge point, receiving waters and waters classifications:

Outfall	Receiving Water	Latitude		Longitude		Waters Classification	Biological Waters Characterization
001	Illinois and Michigan Canal	41° 41' 36.59"	North	87° 57' 10.87"	West	General Use	Not Rated
002	Illinois and Michigan Canal	41° 41' 33.53"	North	87° 57' 19.62"	West	General Use	Not Rated
003	Calumet Sag Channel	41° 41' 36.24"	North	87° 56′ 37.66"	West	Chicago Area Waterway System Aquatic Life Use A Water.	Not Rated

To assist you further in identifying the location of the discharge please see the attached map.

The subject facility discharges to the Illinois and Michigan Canal at a point where 0 cfs, via Outfalls 001 and 002, of flow exists upstream of the outfall during critical 7Q10 low-flow conditions. The Illinois and Michigan Canal is not listed as a biologically significant stream in the 2008 Illinois Department of Natura Resources Publication Integrating Multiple Taxa in a Biological Stream Rating System, nor is it given an integrity rating in that document. The Illinois and Michigan Canal, Waterbody Segment, GU, is not listed on the draft 2016 Illinois Integrated Water Quality Report and Section 303(d) List Since it has not been assessed. The Illinois and Michigan Canal is not subject to enhanced dissolved oxygen standards.

The subject facility discharges to the Calumet-Sag Channel at a point where 0 cfs, via Outfall 003, of flow exists upstream of the outfall during critical 7Q10 low-flow conditions. The Calumet-Sag Channel is not listed as a biological significant stream in the 2008 Illinois Department of Natural Resources Publication Integrating Multiple Taxa in a Biological Stream Rating System, nor is it given an integrity rating in that document. The Calumet-Sag Channel, Waterbody Segment, H-01, is listed on the draft 2016 Illinois Integrated Water Quality Report and Section 303(d) List. The Cal-Sag Channel is not subject to enhanced dissolved oxygen standards.

The following parameters have been identified as the pollutants causing impairment:

Designated Uses	Pollutants Causing Impairment	
Indigenous Aquatic Life Use	Dissolved Oxygen (non-Pollutant), Iron, Phosphorus, and Total Suspended Solids (TSS).	
Fish Consumption Use	Mercury and Polychlorinated Biphenyls (PCB's)	

The discharges from the facility shall be monitored and limited at all times as follows:

Outfall 001 Combined Effluent Wastewater (DAF = 0.238 MGD)

	LOAD LIMITS lbs/day DAF (DMF)		7.00		ENTRA			
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	REGULATION	30 DAY AVERAGE	DAILY MAXIMUM		REGULATION	
Flow (MGD)								
рН				0.6			35 IAC 302.204	
BOD₅				30		60	35 IAC 304.120	
Temperature		2					35 IAÇ 302.211	
Total Residual Chlorine						0.05	35 IAC 302.208 40 CFR 125.3	
Total Suspended Solids				30	- 4	60	35 IAC 304.120	

Electronic Filing: Received, Clerk's Office 05/20/2020

Public Notice/Fact Sheet -- Page 3 -- NPDES Permit No. IL0005126

	* * *	LOAD LIMI DAF (ICENTRA IMITS mg	TION	ic Noticed
	PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	REGULATION	30 DAY AVERAGI	E	DAILY MAXIMUM	REGULATION
	Oil and Grease				15		30	35 IAC 304.124
	Iron (Total)				. 2		4	35 IAC 304.124
	Barium	€5	*	a a	2		4	35 IAC 304.124
	Chloride		*		- 1	fonitor Or	nly	35 IAC 302.208(g)
	Vinyl Chloride						0.002	35 IAC 302.208(g)
	Ammonia				30 day Average	Weekly Average	Daily Maximum	35 IAC 302.212
	March – May September - October				3.2	7.9	15.0	
	June - August				2.3	5.8	15.0	
	November - February				5.6	14.0	15.0	
4)	Dissolved Oxygen				Monthly Average not less	Weekly Average not less	Daily Minimum	35 IAC 302.206
	March – July				than 5	than 6	- 6	
	August – February	11		9	3.5	4	5.5	8
	Stormwater	i Ř				12		CFR 122.26(b)(14)(xi)
			я		э.	N.	×-	5.11 121.25(5)(11)(A)
	Outfall A01 Treated Sanitary	Wastewater	(DAF = 0.015	MGD)		*		P
	Flow (MGD)	Wastewater	(DAI - 0.010)	MOD)				
	pH							35 IAC 302.204
	BOD ₅	3.75	7.50		30		60	35 IAC 304.120
_	Total Suspended Solids	3.75	7.50		30		60	35 IAC 304.120
	Fecal Coliform					i ti	400/100 ml	35 IAC 302.209
	Outfall B01 Treated Sanitary	Wastewater	(DAF = 0.015	MGD)				
	Flow (MGD)							
	pH		- 1				B) .	35 IAC 302.204
	BOD ₅	3.75	7.50		30		60	35 IAC 304.120
	Total Suspended Solids	3.75	7.50		30		60	35 IAC 304.120
(4)	Fecal Coliform						400/100 ml	35 IAC 302.209

Electronic Filing: Received, Clerk's Office 05/20/2020

R 176

35 IAC 309.146

40 CFR 122.26(b)(14)(xi)

Public Notice/Fact Sheet -- Page 4 -- NPDES Permit No. IL0005126

		ITŞ Ibs/day (DMF)			ITRATION 'S mg/l	
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	REGULATION	30 DAY AVERAGE	DAILY MAXIMUM	REGULATION
Outfall C01 Treated	Remediation W	ater (DAF = 0	.0008 MGD)			
Flow (MGD)	4.					
Total Organic Carbon		¥ -		Monit	or Only	35 IAC 309.146
1,2 Dichloroethane		3*3		Monit	or Only	35 IAC 309.146
					ğ 1	
Outfall 002 Stormwater	r (Intermitten	Discharge)		*		
Flow (MGD)				%	Yo.	5
Volatile Organic Compou	nds			Monit	or Only	35 IAC 309.146
Stormwater			a		40 CFR 12	22.26(b)(14)(xi)
						÷ .
Outfail 003 Stormwater	(Intermittent D	ischarge)	, * * *			

Load Limit Calculations:

Volatile Organic Compounds

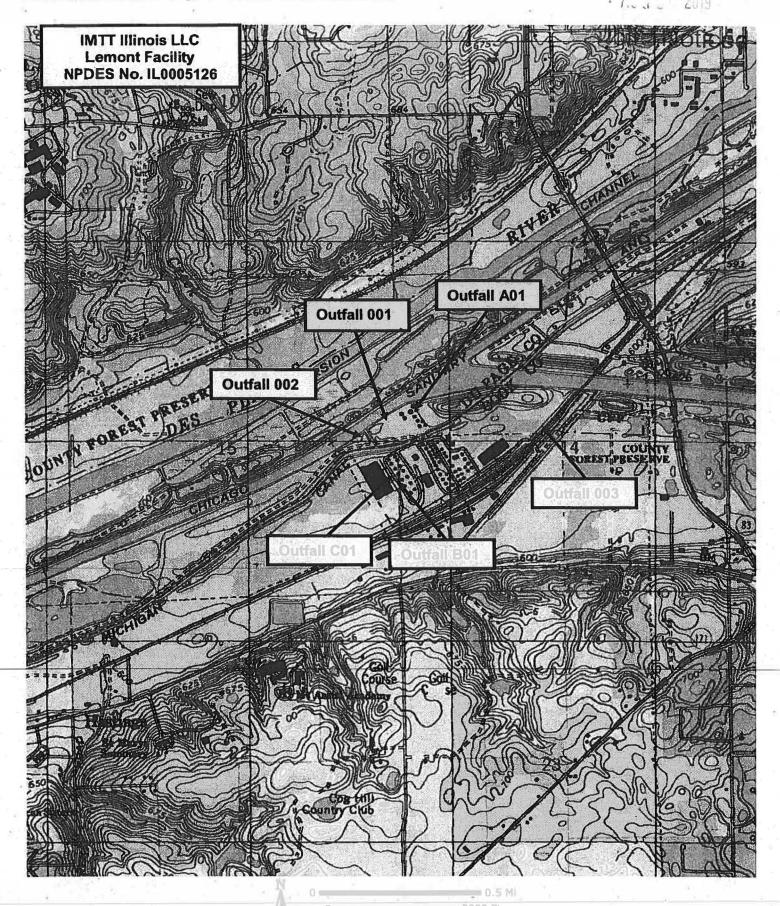
Flow (MGD)

Stormwater

A. Outfall A01, load limit calculations for the following pollutant parameters were based on a design average flow of 0.015 MGD and using the formula of average or maximum flow (MGD) X concentration limit (mg/l) X 8.34 = the average or maximum load limit (lbs/day): BOD₅ and Total Suspended Solids.

Monitor Only

B. Outfall B01, load limit calculations for the following pollutant parameters were based on a design average flow of 0.015 MGD and using the formula of average or maximum flow (MGD) X concentration limit (mg/l) X 8.34 = the average or maximum load limit (lbs/day): BOD₅ and Total Suspended Solids.


The load limits appearing in the permit will be the more stringent of the State and Federal Guidelines.

The following explain the conditions of the proposed permit:

The Special Conditions clarify flow measurement and reporting, pH, temperature, Total Residual Chlorine, monitoring location, discharge monitoring report submission, Class K Operator, 126 priority pollutants, and stormwater.

Electronic Filing: Received, Clerk's Office 05/20/2020 R177

Public Notice/Fact Sheet - Page 5 - NPDES Permit No. IL0005126

Illinois Environmental Protection Agency

Division of Water Pollution Control

1021 North Grand Avenue East

Post Office Box 19276

Springfield, Illinois 62794-9276

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

Reissued (NPDES) Permit

Expiration Date:

Issue Date: Effective Date: Modification Date:

Name and Address of Permittee:

Facility Name and Address:

IMTT Illinois 13589 Main Street Lemont, Illinois 60439 IMTT Illinois – Lemont Facility 13589 Main Street Lemont, Illinois 60439 (Cook County)

Discharge Number and Name:

Receiving Waters:

001 Combined Effluent Wastewater A01 Treated Sanitary Wastewater Illinois and Michigan Canal

B01 Treated Sanitary Wastewater C01 Treated Remediation Water

002 Stormwater Runoff

Illinois and Michigan Canal Calumet Sag Channel

003 Stormwater Runoff

In compliance with the provisions of the Illinois Environmental Protection Act, Title 35 of Ill. Adm. Code, Subtitle C and/or Subtitle D, Chapter 1, and the Clean Water Act (CWA), the above-named permittee is hereby authorized to discharge at the above location to the above-named receiving stream in accordance with the standard conditions and attachments herein.

Permittee is not authorized to discharge after the above expiration date. In order to receive authorization to discharge beyond the expiration date, the permittee shall submit the proper application as required by the Illinois Environmental Protection Agency (IEPA) not later than 180 days prior to the expiration date.

Darin E. LeCrone, P.E. Manager, Industrial Unit, Permit Section Division of Water Pollution Control

DEL:SMT:18101001.smt

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

(Outfall 001 Combined Efflue	ent Wastewater (I	DAF = 0.238	MGD)	SA.			
		LOAD LIMITS DAF (DM		C	ONCENTRAT		*	
	PARAMETER	30 DAY AVERAGE N	DAILY MAXIMUM	30 DAY AVE	RAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	SAMPLE TYPE
	The discharge consists of: 1. Boiler Blowdown 2. Water Softener B 3. Reverse Osmosi 4. Laboratory Waste 5. Treated Sanitary 6. Safety Shower To 7. Fire Hose Hydros 8. Air Compressor 0 9. Vehicle Washdot 10. Tank blocastation	eackflush s Reject e Wastewater (A01 est Water static Water Cooling Water vn	I and B01)	*	, ""	- 3 <u>-</u> 3		
	10. Tank Hydrostatic11. Stormwater Rund12. Scrubber Water13. Remediation Water14. Tank Steam Con	off* ter (C01)		9 - e	ë i	v 3	a .	
à	Flow (MGD)	See Special Con	ndition 1		-	0	1/Month	Measurement
	рН	See Special Cor	ndition 2	TALE			1/Month	Grab
	BOD ₅			30		60	1/Month	Grab
	Temperature	See Special Con	ndition 3.				1/Month	Single Reading
	Total Residual Chlorine	See Special Cor	ndition 4.		enner re	0.05	1/Month	Grab
	Total Suspended Solids			30		60	1/Month	Grab
	Oil and Grease			15		30	1/Month	Grab
	Iron (Total)			2		4	1/Month	Composite
_	Chloride	,			_Monitor_Onl	у	1/Month	Grab
	Vinyl Chloride					0.002	1/Month	Grab
	Ammonia			30 Day Average	Weekly Average	Daily Maximum	1/Month	Grab
	Spring/Fall			3.2	7.9	15.0		
	Summer			2.3	5.8	15.0	540	
	Winter			5.6	14.0	15.0	1.8	
	Dissolved Oxygen			Monthly Average not less	Weekly Average no less than	ot Daily Minimum	1/Month	Grab

than

5

3.5

less than

6

4

5.5

Stormwater See Special Condition 12

March - July

August - February

Public Noticed

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall A01 Treated Sanitary Wastewater (DAF = 0.015 MGD)

1 × 1 × 1	LOAD LIMITS lbs/day DAF (DMF)			ITRATION S mg/L	*	
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	SAMPLE TYPE
Flow (MGD)	See Special	Condition 1.	* 11	*	1/Month	Measure
pH T	See Special	Condition 2			1/Month	Grab
BOD₅	3.75	7.50	30	60	1/Month	Grab
Total Suspended Solids	3.75	7.50	30	60	1/Month	Grab
Fecal Coliform	See Special	Condition 5.		400/100 ml	1/Month	Grab

See Special Condition 13

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall B01 Treated Sanitary Wastewater (DAF = 0.015 MGD)

N N		ITS lbs/day <u>′DMF)</u>		ITRATION S mg/L	8 Hj		-
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	= \$5	SAMPLE TYPE
Flow (MGD)	See Special	Condition 1.	9		1/Month	145	Measure
рН	See Special	Condition 2	a"		1/Month	8	Grab
BOD ₅	3.75	7.50	30	60	1/Month		Grab
Total Suspended Solids	3.75	7.50	30	60	1/Month		Grab
Fecal Coliform	See Special	Condition 5.		400/100 ml	1/Month		Grab

See Special Condition 13

1101 - 2019

NPDES Permit No. IL0005126

Jublic Noticed

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall C01 Remediation Water* (DAF = 200 gpd)

	LOAD LIMI <u>DAF (</u>	TS lbs/day DMF)		ITRATION <u>S mg/L</u>			
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY		SAMPLE TYPE
Flow (MGD)	See Special	Condition 1.			1/Month		Measure
рН	See Special	Condition 2		9 8	1/Month		Grab
Total Organic Carbon			Monito	or Only	1/Quarter**		Grab
1,2 Dichloroethane			Monite	or Only	1/Quarter**	ė.	Grab

^{* -} See Special Condition 14.

^{** -} See Special Condition 15.

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall 002 Stormwater (Intermittent Discharge)

		MITS lbs/day (DMF)		TRATION S mg/l		*
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	SAMPLE TYPE
Flow (MGD)	See Special (Condition 1.			2/Year	Measure
Volatile Organic Compounds	See Special (Condition 16.	Monito	or Only	2/Year	Grab
Stormwater	See Special (Condition 12.				

Electronic Filing: Received, Clerk's Office 05/20/2020

NPDES Permit No. IL0005126

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall 003 Stormwater	(Intermittent Disc	charge)			x	
		IITS lbs/day <u>(DMF)</u>	CONCEN <u>LIMIT</u>	TRATION S mg/l	# f	
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	SAMPLE TYPE
Flow (MGD)	See Special C	Condition 1.			2/Year	Measure
Volatile Organic Compounds	See Special Condition 16.		Monito	or Only	2/Year	Grab
Stormwater	See Special C	Condition 12.				

Special Conditions

<u>SPECIAL CONDITION 1.</u> Flow shall be measured in units of Million Gallons per Day (MGD) and reported as a monthly average and a daily maximum on the Discharge Monitoring Report.

<u>SPECIAL CONDITION 2.</u> The pH shall be in the range 6.5 to 9.0. The monthly minimum and monthly maximum values shall be reported on the DMR form.

<u>SPECIAL CONDITION 3.</u> This facility is not allowed any mixing with the receiving stream in order to meet applicable water quality thermal limitations. Therefore, discharge of wastewater from this facility must meet the following thermal limitations prior to discharge into the receiving stream.

A. The discharge must not exceed the maximum limits in the following table during more than one percent of the hours in the 12 month period ending with any month. Moreover, at no time shall the water temperature of the discharge exceed the maximum limits in the following table by more the 1.7° C (3° F).

	<u>Jan.</u>	Feb.	Mar.	April	May	<u>June</u>	<u>July</u>	Aug.	Sept.	Oct.	Nov.	Dec.
°F	60	60	60	90	90	90	90	90	90	90	90	60
°C	16	16	16	32	32	32	32	32	32	32	32	16

- B. In addition, the discharge shall not cause abnormal temperature changes that may adversely affect aquatic life unless caused by natural conditions.
- C. The discharge shall not cause the maximum temperature rise above natural temperatures to exceed 2.8° C (5° F).
- D. The monthly maximum value shall be reported on the DMR form.

<u>SPECIAL CONDITION 4.</u> All samples for Total Residual Chlorine shall be analyzed by an applicable method contained in 40 CFR 136, equivalent in accuracy to low-level amperometric titration. Any analytical variability of the method used shall be considered when determining the accuracy and precision of the results obtained.

SPECIAL CONDITION 5. The daily maximum fecal coliform count shall not exceed 400 per 100 ml.

SPECIAL CONDITION 6. The Permittee shall record monitoring results on Discharge Monitoring Report (DMR) electronic forms using one such form for each outfall each month.

In the event that an outfall does not discharge during a monthly reporting period, the DMR Form shall be submitted with no discharge indicated.

The Permittee is required to submit electronic DMRs (NetDMRs) instead of mailing paper DMRs to the IEPA unless a waiver has been granted by the Agency. More information, including registration information for the NetDMR program, can be obtained on the IEPA website, https://www2.illinois.gov/epa/topics/water-quality/surface-water/netdmr/Pages/quick-answer-guide.aspx

The completed Discharge Monitoring Report forms shall be submitted to IEPA no later than the 25th day of the following month, unless-otherwise specified by the permitting authority.

Permittees that have been granted a waiver shall mail Discharge Monitoring Reports with an original signature to the IEPA at the following address:

Illinois Environmental Protection Agency
Division of Water Pollution Control
Attention: Compliance Assurance Section, Mail Code # 19
1021 North Grand Avenue East
Post Office Box 19276
Springfield, Illinois 62794-9276

SPECIAL CONDITION7. The use or operation of this facility shall be by or under the supervision of a Certified Class K operator.

SPECIAL CONDITION 8. If an applicable effluent standard or limitation is promulgated under Sections 301(b)(2)(C) and (D), 304(b)(2), and 307(a)(2) of the Clean Water Act and that effluent standard or limitation is more stringent than any effluent limitation in the permit or controls a pollutant not limited in the NPDES Permit, the Agency shall revise or modify the permit in accordance with the more stringent standard or prohibition and shall so notify the permittee.

Electronic Filing: Received, Clerk's Office 05/20/2020 A 12/87

NPDES Permit No. IL0005126

Special Conditions

1.00 2019

SPECIAL CONDITION 9. The effluent, alone or in combination with other sources, shall not cause a violation of any applicable water quality standard outlined in 35 III. Adm. Code 302.

<u>SPECIAL CONDITION 10.</u> In the event the permittee shall require the use of water treatment additives other than those previously approved by the Agency, or if the permittee increases the feed rate or quantity of the additives used beyond what has previously been approved by the Agency, the permittee shall request a modification of this permit in accordance with the Standard Conditions - Attachment H.

SPECIAL CONDITION 11. Samples taken in compliance with the effluent monitoring requirements shall be taken at a point representative of the discharge, but prior to entry into the receiving stream.

SPECIAL CONDITION 12.

STORM WATER POLLUTION PREVENTION PLAN (SWPPP)

- A. A storm water pollution prevention plan shall be maintained by the permittee for the storm water associated with industrial activity at this facility. The plan shall identify potential sources of pollution which may be expected to affect the quality of storm water discharges associated with the industrial activity at the facility. In addition, the plan shall describe and ensure the implementation of practices which are to be used to reduce the pollutants in storm water discharges associated with industrial activity at the facility and to assure compliance with the terms and conditions of this permit. The permittee shall modify the plan if substantive changes are made or occur affecting compliance with this condition.
 - 1. Waters not classified as impaired pursuant to Section 303(d) of the Clean Water Act.
 - Unless otherwise specified by federal regulation, the storm water pollution prevention plan shall be designed for a storm event equal to or greater than a 25-year 24-hour rainfall event.
 - 2. Waters classified as impaired pursuant to Section 303(d) of the Clean Water Act
 - For any site which discharges directly to an impaired water identified in the Agency's 303(d) listing, and if any parameter in the subject discharge has been identified as the cause of impairment, the storm water pollution prevention plan shall be designed for a storm event equal to or greater than a 25-year 24-hour rainfall event. If required by federal regulations, the storm water pollution prevention plan shall adhere to a more restrictive design criteria.
- B. The operator or owner of the facility shall make a copy of the plan available to the Agency at any reasonable time upon request.
 - Facilities which discharge to a municipal separate storm sewer system shall also make a copy available to the operator of the municipal system at any reasonable time upon request.
- C. The permittee may be notified by the Agency at any time that the plan does not meet the requirements of this condition. After such notification, the permittee shall make changes to the plan and shall submit a written certification that the requested changes have been made. Unless otherwise provided, the permittee shall have 30 days after such notification to make the changes.
- D. The discharger shall amend the plan whenever there is a change in construction, operation, or maintenance which may affect the discharge of significant quantities of pollutants to the waters of the State or if a facility inspection required by paragraph H of this condition indicates that an amendment is needed. The plan should also be amended if the discharger is in violation of any conditions of this permit, or has not achieved the general objective of controlling pollutants in storm water discharges. Amendments to the plan shall be made within 30 days of any proposed construction or operational changes at the facility, and shall be provided to the Agency for review upon request.
- E. The plan shall provide a description of potential sources which may be expected to add significant quantities of pollutants to storm water discharges, or which may result in non-storm water discharges from storm water outfalls at the facility. The plan shall include, at a minimum, the following items:
 - 1. A topographic map extending one-quarter mile beyond the property boundaries of the facility, showing: the facility, surface water bodies, wells (including injection wells), seepage pits, infiltration ponds, and the discharge points where the facility's storm water discharges to a municipal storm drain system or other water body. The requirements of this paragraph may be included on the site map if appropriate. Any map or portion of map may be with the storm security reasons.
 - 2. A site map showing:
 - i. The storm water conveyance and discharge structures;
 - ii. An outline of the storm water drainage areas for each storm water discharge point;

Special Conditions

- iii. Paved areas and buildings;
- iv. Areas used for outdoor manufacturing, storage, or disposal of significant materials, including activities that generate significant quantities of dust or particulates.
- v. Location of existing storm water structural control measures (dikes, coverings, detention facilities, etc.);
- vi. Surface water locations and/or municipal storm drain locations
- vii. Areas of existing and potential soil erosion;
- viii. Vehicle service areas;
- ix. Material loading, unloading, and access areas.
- x. Areas under items iv and ix above may be withheld from the site for security reasons.
- 3. A narrative description of the following:
 - i. The nature of the industrial activities conducted at the site, including a description of significant materials that are treated, stored or disposed of in a manner to allow exposure to storm water;
 - ii. Materials, equipment, and vehicle management practices employed to minimize contact of significant materials with storm water discharges;
 - iii. Existing structural and non-structural control measures to reduce pollutants in storm water discharges;
 - iv. Industrial storm water discharge treatment facilities;
 - v. Methods of onsite storage and disposal of significant materials.
- 4. A list of the types of pollutants that have a reasonable potential to be present in storm water discharges in significant quantities. Also provide a list of any pollutant that is listed as impaired in the most recent 303(d) report.
- An estimate of the size of the facility in acres or square feet, and the percent of the facility that has impervious areas such as pavement or buildings.
- A summary of existing sampling data describing pollutants in storm water discharges.
- The plan shall describe the storm water management controls which will be implemented by the facility. The appropriate controls shall reflect identified existing and potential sources of pollutants at the facility. The description of the storm water management controls shall include:
 - Storm Water Pollution Prevention Personnel Identification by job titles of the individuals who are responsible for developing, implementing, and revising the plan.
 - Preventive Maintenance Procedures for inspection and maintenance of storm water conveyance system devices such as oil/water separators, catch basins, etc., and inspection and testing of plant equipment and systems that could fail and result in discharges of pollutants to storm water.
 - Good Housekeeping Good housekeeping requires the maintenance of clean, orderly facility areas that discharge storm water.
 Material handling areas shall be inspected and cleaned to reduce the potential for pollutants to enter the storm water conveyance system.
 - 4. Spill Prevention and Response Identification of areas where significant materials can spill into or otherwise enter the storm water conveyance systems and their accompanying drainage points. Specific material handling procedures, storage requirements, spill cleanup equipment and procedures should be identified, as appropriate. Internal notification procedures for spills of significant materials should be established.
 - 5. Storm Water Management Practices Storm water management practices are practices other than those which control the source of pollutants. They include measures such as installing oil and grit separators, diverting storm water into retention basins, etc. Based on assessment of the potential of various sources to contribute pollutants, measures to remove pollutants from storm water discharge shall be implemented. In developing the plan, the following management practices shall be considered:

Electronic Filing: Received, Clerk's Office 05/20/2020

NPDES Permit No. IL0005126

Special Conditions

- Containment Storage within berms or other secondary containment devices to prevent leaks and spiles of the secondary containment devices to prevent leaks and spiles of the secondary containment devices to prevent leaks and spiles of the secondary containment devices to prevent leaks and spiles of the secondary containment devices to prevent leaks and spiles of the secondary containment devices to prevent leaks and spiles of the secondary containment devices to prevent leaks and spiles of the secondary containment devices to prevent leaks and spiles of the secondary containment devices to prevent leaks and spiles of the secondary containment devices to prevent leaks and spiles of the secondary containment devices to prevent leaks and spiles of the secondary containment devices to prevent leaks and spiles of the secondary containment devices to prevent leaks and spiles of the secondary containment devices to prevent leaks and spiles of the secondary containment devices to prevent leaks and spiles of the secondary containment devices to the secondary containment device storm water runoff. To the maximum extent practicable storm water discharged from any area whe re material handling equipment or activities, raw material, intermediate products, final products, waste materials, by-products, or industrial machinery are exposed to storm water should not enter vegetated areas or surface waters or infiltrate into the soil unless adequate treatment is provided.
- Oil & Grease Separation Oil/water separators, booms, skimmers or other methods to minimize oil contaminated storm water discharges.
- Debris & Sediment Control Screens, booms, sediment ponds or other methods to reduce debris and sediment in storm water discharges.
- Waste Chemical Disposal Waste chemicals such as antifreeze, degreasers and used oils shall be recycled or disposed of in an approved manner and in a way which prevents them from entering storm water discharges.
- Storm Water Diversion Storm water diversion away from materials manufacturing, storage and other areas of potential storm water contamination. Minimize the quantity of storm water entering areas where material handling equipment of activities, raw material, intermediate products, final products, waste materials, by-products, or industrial machinery are exposed to storm water using green infrastructure techniques where practicable in the areas outside the exposure area, and otherwise divert storm water away from exposure area.
- vi. Covered Storage or Manufacturing Areas Covered fueling operations, materials manufacturing and storage areas to prevent contact with storm water.
- vii. Storm Water Reduction Install vegetation on roofs of buildings within adjacent to the exposure area to detain and evapotranspirate runoff where precipitation falling on the roof is not exposed to contaminants, to minimize storm water runoff; capture storm water in devices that minimize the amount of storm water runoff and use this water as appropriate based on quality.
- Sediment and Erosion Prevention The plan shall identify areas which due to topography, activities, or other factors, have a high potential for significant soil erosion. The plan shall describe measures to limit erosion.
- Employee Training Employee training programs shall inform personnel at all levels of responsibility of the components and goals of the storm water pollution control plan. Training should address topics such as spill response, good housekeeping and material management practices. The plan shall identify periodic dates for such training.
- 8. Inspection Procedures Qualified plant personnel shall be identified to inspect designated equipment and plant areas. A tracking or follow-up procedure shall be used to ensure appropriate response has been taken in response to an inspection. Inspections and maintenance activities shall be documented and recorded.
- G. Non-Storm Water Discharge The plan shall include a certification that the discharge has been tested or evaluated for the presence of non-storm water discharge. The certification shall include a description of any test for the presence of non-storm water discharges, the methods used, the dates of the testing, and any onsite drainage points that were observed during the testing. Any facility that is unable to provide this certification must describe the procedure of any test conducted for the presence of non-storm water discharges, the test results, potential sources of non-storm water discharges to the storm sewer, and why adequate tests for such storm sewers were not feasible.
- H. Quarterly Visual Observation of Discharges The requirements and procedures for quarterly visual observations are applicable to all outfalls covered by this condition.
 - You must perform and document a quarterly visual observation of a storm water discharge associated with industrial activity from each outfall. The visual observation must be made during daylight hours. If no storm event resulted in runoff during daylight hours from the facility during a monitoring quarter, you are excused from the visual observations requirement for that quarter, provided you document in your records that no runoff occurred. You must sign and certify the document.
 - Your visual observation must be made on samples collected as soon as practical, but not to exceed 1 hour or when the runoff or snow melt begins discharging from your facility. All samples must be collected from a storm event discharge that is greater than 0.1 inch in magnitude and that occurs at least 72 hours from the previously measureable (greater than 0.1 inch rainfall) storm event. The observation must document: color, odor, clarity, floating solids, settled solids, suspended solids, foam, oil sheen, and other obvious indicators of storm water pollution. If visual observations indicate any unnatural color, odor, turbidity, floatable material, oil sheen or other indicators of storm water pollution, the permittee shall obtain a sample and monitor for the parameter or the list of pollutants in Part E.4.
 - You must maintain your visual observation reports onsite with the SWPPP. The report must include the observation date and time inspection personnel, nature of the discharge (i.e., runoff or snew melt), visual quality of the storm water discharge

Special Conditions

(including observations of color, odor, floating solids, settled solids, suspended solids, foam, oil sheem, and other obvious indicators of storm water pollution), and probable sources of any observed storm water contamination.

- 4. You may exercise a waiver of the visual observation requirement at a facility that is inactive or unstaffed, as long as there are no industrial materials or activities exposed to storm water. If you exercise this waiver, you must maintain a certification with your SWPPP stating that the site is inactive and unstaffed, and that there are no industrial materials or activities exposed to storm water.
- 5. Representative Outfalls If your facility has two or more outfalls that you believe discharge substantially identical effluents, based on similarities of the industrial activities, significant materials, size of drainage areas, and storm water management practices occurring within the drainage areas of the outfalls, you may conduct visual observations of the discharge at just one of the outfalls and report that the results also apply to the substantially identical outfall(s).
- 6. The visual observation documentation shall be made available to the Agency and general public upon written request.
- The permittee shall conduct an annual facility inspection to verify that all elements of the plan, including the site map, potential pollutant sources, and structural and non-structural controls to reduce pollutants in industrial storm water discharges are accurate. Observations that require a response and the appropriate response to the observation shall be retained as part of the plan. Records documenting significant observations made during the site inspection shall be submitted to the Agency in accordance with the reporting requirements of this permit.
- J. This plan should briefly describe the appropriate elements of other program requirements, including Spill Prevention Control and Countermeasures (SPCC) plans required under Section 311 of the CWA and the regulations promulgated there under, and Best Management Programs under 40 CFR 125.100.
- K. The plan is considered a report that shall be available to the public at any reasonable time upon request.
- L. The plan shall include the signature and title of the person responsible for preparation of the plan and include the date of initial preparation and each amendment thereto.
- M. Facilities which discharge storm water associated with industrial activity to municipal separate storm sewers may also be subject to additional requirement imposed by the operator of the municipal system

Construction Authorization

Authorization is hereby granted to construct treatment works and related equipment that may be required by the Storm Water Pollution Prevention Plan developed pursuant to this permit.

This Authorization is issued subject to the following condition(s).

- N. If any statement or representation is found to be incorrect, this authorization may be revoked and the permittee there upon waives all rights there under.
- O. The issuance of this authorization (a) does not release the permittee from any liability for damage to persons or property caused by or resulting from the installation, maintenance or operation of the proposed facilities; (b) does not take into consideration the structural stability of any units or part of this project; and (c) does not release the permittee from compliance with other applicable statutes of the State of Illinois, or other applicable local law, regulations or ordinances.
- P. Plans and specifications of all treatment equipment being included as part of the stormwater management practice shall be included in the SWPPP.
- Q. Construction activities which result from treatment equipment installation, including clearing, grading and excavation activities which result in the disturbance of one acre or more of land area, are not covered by this authorization. The permittee shall contact the IEPA regarding the required permit(s).

REPORTING

R. The facility shall submit an electronic copy of the annual inspection report to the Illinois Environmental Protection Agency at epa.npdes.inspection@illinois.gov. The report shall include results of the annual facility inspection which is required by Part I of this condition. The report shall also include documentation of any event (spill, treatment unit malfunction, etc.) which would require an inspection, results of the inspection, and any subsequent corrective maintenance activity. The report shall be completed and signed by the authorized facility employee(s) who conducted the inspection(s). The annual inspection report is considered a public document that shall be available at any reasonable time upon request.

Page 13

Electronic Filing: Received, Clerk's Office 05/20/2020 R 61

NPDES Permit No. IL0005126

Special Conditions

- S. The first report shall contain information gathered during the one year time period beginning with the effective date of coverage under this permit and shall be submitted no later than 60 days after this one year period has expired. Each subsequent report shall contain the previous year's information and shall be submitted no later than one year after the previous year's report was due.
- T. If the facility performs inspections more frequently than required by this permit, the results shall be included as a dditional information in the annual report.
- U. The permittee shall retain the annual inspection report on file at least 3 years. This period may be extended by request of the Illinois Environmental Protection Agency at any time.
- V. Annual inspection reports shall be submitted to one of the following addresses:
 - a. Electronic Quarterly Reposts should be submitted to

epa.indannualinsp@illinois.gov

b. If electronic submittal is unavailable, reports should be mailed to:

Illinois Environmental Protection Agency
Division of Water Pollution Control
Compliance Assurance Section, Mail Code #19
Annual Inspection Report
1021 North Grand Avenue East
Post Office Box 19276
Springfield, Illinois 62794-9276

- W. The permittee shall notify any regulated small municipal separate storm sewer owner (MS4 Community) that they maintain coverage under an individual NPDES permit. The permittee shall submit any SWPPP or any annual inspection to the MS4 community upon request by the MS4 community.
- <u>SPECIAL CONDITION 13.</u> Discharges from the sanitary waste treatment systems (Internal Outfalls A01 and B01) shall be sampled prior to entry into the on-site ditch tributary to the settling pond.

<u>SPECIAL CONDITION 14.</u> Discharges from the remediation system (Internal Outfall C01) shall be sampled prior to mixing with any other discharges associated with Outfall 001.

SPECIAL CONDITION 15. Sampling for Internal Outfall C01 shall occur at the same time as the sampling listed in Special Condition 12 and shall be submitted in accordance with Special Condition 12.

SPECIAL CONDITION 16. The permittee shall sample the effluent from Outfalls 002 and 003 on a semi-annual basis for all Volatile Organic Compounds covered by 40 CFR 136 Appendix A, Methods 624 and 625. All sample results shall be submitted on a semi-annual basis with the June and December Discharge Monitoring Reports to the address indicated in Special Condition 6.

If the results of this sampling indicate that additional monitoring requirements or limitations are necessary, the Agency may modify the permit following public notice and opportunity for comment.

<u>SPECIAL CONDITION 17.</u> IMTT Illinois LLC, Lemont Facility (IL0005126) timely filed a Time-Limited Water Quality Standard (TLWQS) for chloride (Case # PCB 2019-017) and is participating in the chloride workgroup for the CAWS dischargers. Since the permittee timely filed, the chloride water quality standard is stayed. IMTT must continue to participate in the workgroup and must comply with the Board Order resulting from the TLWQS (Case # PCB 2019-017).

	DECEIVED
PN Date_ 8-20-19	AUG 3 0 2019
Permit No <u>IL0005126</u>	IEPA BOW/WPC/PERMIT SECTION
Permittee Name_IMTT-Illinois, LLC	DOWN OF ERMIT SECTION
PLEASE CHECK THE APPROPRIATE ANSWER AND	
I will post the Public Notice for a perbeginning 8/26/19.	100 0 30 0035
I will not post the Public Notice.	
Must Signature	9-26-19 Date
*! F10 1570	

STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

Permittee: IMTT Illinois LLC - Lemont

Page 1 of 1

Permit Number: IL0005126 Reviewed By: Shu-Mei Tsai

Date: Tuesday, September 24, 2019

30-Day Notice Review Notes:

The Agency receive a comment letter dated August 02, 2019 from Larry Newton.

IMTT – Lemont objects to the inclusion in the draft permit of the vinyl chloride concentration limit of 0.002 mg/L as a daily maximum limit.

Response:

It was a reference error for vinyl chloride in the daft permit and it should be 35 IAC 302.210. According to the calculation from the Standards Unit, the 95% potential is 0.0097mg/L and it exceeds 0.002mg/L of the standard of derived water quality criteria.

The limit of vinyl chloride remains.

Action:

Re-issue NPDES Permit

STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

Permittee: IMTT Illinois LLC - Lemont

Page 1 of 2

Permit Number: IL0005126 Reviewed By: Shu-Mei Tsai

Date: Tuesday, September 24, 2019

30-Day Notice Review Notes:

1. The Agency received a comment letter dated August 02, 2019 from Larry Newton.

IMTT – Lemont objects to the inclusion in the draft permit of the vinyl chloride concentration limit of 0.002 mg/L as a daily maximum limit.

Response:

It was a reference error for vinyl chloride in the daft permit and it should be 35 IAC 302.210. According to the calculation from the Standards Unit, the 95% potential is 0.0097mg/L and it exceeds 0.002mg/L of the standard of derived water quality criteria.

The limit of vinyl chloride remains.

2. The Agency receive a comment letter dated October 3, 2019 from Larry Newton.

IMTT – Lemont requests a mixing zone be considered with respect to the vinyl chloride. Based on the maximum potential concentration computed (0.0097 mg/L), only a 5:1 dilution is necessary to assure the human health splash criteria is achieved, which would readily occur within a small mixing zone. Mixing zones are allowed for streams with less than a 3:1 dilution ratio under Section 302.102(b)(8). However, if the Agency disagrees with this approach, and the effluent limit of 0.002 mg/L remains for vinyl chloride, then a compliance plan needs to be incorporated into the NPDES Permit before issuance to provide IMTT the time necessary to achieve compliance. The following compliance schedule is proposed if the mixing zone approach or the no public exposure arguments are rejected.

	3 months from effective date of permit	Prepare Sampling Plan for vinyl chloride testing	
).	9 months from effective date of permit	Interim progress report on source of vinyl chloride	
	15 months from effective date of permit	Final report on source of vinyl chloride	
	21 months from effective date of permit	Report on treatment options for removing vinyl chloride	
	27 months from effective date of permit	Preliminary design completed for removing vinyl chloride	
	33 months from effective date of permit	Final design and permit application for construction	
	36 months from effective date of permit	Construction permit issued	
	48 months from effective date of permit	Construction complete, vinyl chloride limit goes into effect	

Response:

There is no mixing available (unless the facility discharges only during storm events). See the email dated October 11, 2019 from Scott Twait.

STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

Permittee: IMTT Illinois LLC - Lemont

Page 2 of 2

Permit Number: IL0005126 Reviewed By: Shu-Mei Tsai

Date: Tuesday, September 24, 2019

Special Condition 18 indicates the compliance schedule to provide IMTT the time necessary to achieve compliance as below:

The permittee shall compete the following described project in accordance with the following schedule:

3 months from effective date of permit	Prepare Sampling Plan for vinyl chloride testing
3 months from effective date of permit	Interim progress report on source of vinyl chloride
3 months from effective date of permit	Final report on source of vinyl chloride
3 months from effective date of permit	Report on treatment options for removing vinyl chloride
3 months from effective date of permit	Preliminary design completed for removing viruyl chloride
3 months from effective date of permit	Final design and permit application for construction
3 months from effective date of permit	Construction permit issued
3 months from effective date of permit	Construction complete, vinyl chloride limit goes into effect

This Permit may be modified, with Public Notice, to include revised compliance dates set out in this Permit that are superseded or supplemented by compliance dates in judicial orders or Pollution Control Board orders. Prior to such permit modification, the revised dates on the appropriate orders shall govern the Permittee's compliance.

Action: R

Re-30 Day Public Notice.

- IMTT-Illinois

A PARTNERSHIP

Lemont Facility 13589 Main Street Lemont, IL 60439 Phone (630) 257-6222 Fax (630) 257-7135 Jollet Facility 24420 W. Durkee Road Channahon, IL 60410 Phone (815) 423-2500 Fax (815) 423-2525

October 3, 2019

Mr. Darin E. LeCrone, P.E.

Manager, Industrial Unit, Permit Section
Division of Water Pollution Control
Illinois Environmental Protection Agency
1021 North Grand Avenue East
Springfield, IL 62702

OCT 0 4 2019

BOW/WPC/PERMIT SECTION

Re: IMTT Illinois-Lemont Facility
Draft NPDES Permit IL0005126

Vinyl Chloride Comments

Dear Mr. LeCrone:

Thank you for the opportunity to review the draft NPDES permit for above referenced discharge. We have reviewed the draft permit and find it acceptable except for the effluent limit on outfall 001 for vinyl chloride of a daily maximum of 0.002 mg/L. We believe this limit is inappropriate and respectfully request the Agency review this limit. In support of our request the following is offered.

Background

Outfall 001 discharges to what is the head waters of the I&M Canal on the west side of Route 83. When the Cal Sag Channel was constructed, it physically cut across the I&M Canal, so that now the I&M Canal ends east of Route 83 and then begins again at the IMTT Outfall 001 west of IMTT and Route 83. So the subject discharge is physically the headwaters for the receiving stream, and therefore there is no fish passing the outfall location.

Vinyl Chloride

IMTT operates a groundwater remediation system removing chlorinated solvents from the groundwater. After treatment, the groundwater is discharged to the lagoon system and is discharged through Outfall 001 with the other wastewater. Based on the *reasonable potential* analysis completed by the Agency, the maximum expected vinyl chloride in Outfall 001 is 0.0097 mg/L. (In the third quarter 2019, Outfall 001 contained 0.0081 mg/L vinyl chloride, the highest recorded in the past three years, so the estimate of 0.0097 mg/L appears reasonable).

October 3, 2019 Letter

Page 2 of 3

Treatment

The combined wastewater that is discharged through Outfall 001 is treated through a series of lagoons, with some mechanical aeration. Vinyl chloride is readily air stripped and during the summer months the vinyl chloride levels are consistently below 0.002 mg/L. However, during the winter, air stripping efficiencies decline and ice build-up reduces the volatilization from the lagoon surfaces and vinyl chloride concentrations in Outfall 001 increase.

Effluent Limits

There are no numerical effluent limits for vinyl chloride in the Illinois Adm Code Water Quality Standards. The Agency developed an effluent limit based on a human health criteria of 0.002 mg/L for vinyl chloride, which is the public drinking water standard. Apparently, the Agency applied 0.002 mg/L as protective from exposure to splashing, presumably based on some dermal exposure. This "splash factor" was then applied directly to the effluent as a limit without regard to any allowed mixing zone. As the I&M Canal at the point of discharge is inaccessible to the public, it is not clear whom this limit is intended to be protecting.

Mixing Zone

Under 35 IAC 302.102, IMTT respectfully requests a mixing zone be considered with respect to the vinyl chloride. Based on the maximum potential concentration computed (0.0097 mg/L), only a 5:1 dilution is necessary to assure the human health splash criteria is achieved, which would readily occur within a small mixing zone. Mixing zones are allowed for streams with less than a 3:1 dilution ratio under Section 302.102(b)(8). IMTT would welcome the opportunity to work with the Agency in determining the dilution within a mixing zone for vinyl chloride.

Compliance Schedule

IMTT believes with a mixing zone consideration, no effluent limit is necessary for vinyl chloride. However, if the Agency disagrees with this approach, and the effluent limit of 0.002 mg/L remains for vinyl chloride, then a compliance plan needs to be incorporated into the NPDES Permit before issuance to provide IMTT the time necessary to achieve compliance. The following compliance schedule is proposed if the mixing zone approach or the no public exposure arguments are rejected.

3 months from effective date of permit	Prepare Sampling Plan for vinyl chloride testing
9 months from effective date of permit	Interim progress report on source of vinyl chloride
15 months from effective date of permit	Final report on source of vinyl chloride
21 months from effective date of permit	Report on Treatment Options for removing vinyl chloride
27 months from effective date of permit	Preliminary design completed for removing vinyl chloride
33 months from effective date of permit	Final design and permit application for construction
36 months from effective date of permit	Construction permit issued
48 months from effective date of permit	Construction complete, vinyl chloride limit goes into effect

October 3, 2019 Letter

Page 3 of 3

Closure

The inclusion of the vinyl chloride effluent limit is a significant issue to IMTT, and we do not believe the inclusion is appropriate under the regulations. I request a site visit so that Agency can view the outfall and the lack of public access to the I & M Canal adjacent to the outfall. We would also welcome working with the Agency on developing the appropriate size of the mixing zone that should be applied to vinyl chloride.

On another note, the NPDES permit we are currently operating under includes the following statement –

The discharge from Outfall 001 can flow, by gravity or be pumped, to the Illinois & Michigan Canal.

It is hoped that this statement will be included in the new permit once it becomes effective.

Thank you for the opportunity to provide these comments. We look forward to working with the Agency in finalizing this permit.

Sincerely

Larry Newton

Environmental Manager

Cc:

Shu-Mei Tsai

Scott Twait

Brian Koch

Tsai, Shu-Mei

From:

Newton, Larry < LarryNewton@IMTT.Com>

Sent:

Thursday, October 3, 2019 11:37 AM

To:

Tsai, Shu-Mei

Subject:

[External] Re: NPDES IL0005126 IMTT Illinois - Lemont

Attachments:

10-03-2019 comments re vinyl chloride.pdf

See attached letter. I'm requesting a site visit to review the outfall. An original will be sent to you via UPS.

Larry Newton | Environmental Manager INTERNATIONAL MATEX TANK TERMINALS

13589 Main Street, Lemont, IL 60439 24420 W. Durkee Road, Channahon, IL 60410 Office (630) 257-3960 | Cell (630) 768-0649

Email larrynewton@imtt.com

From: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>
Sent: Thursday, September 26, 2019 2:13 PM
To: Newton, Larry <LarryNewton@IMTT.Com>

Subject: RE: NPDES IL0005126 IMTT Illinois - Lemont

Larry:

Please check it and let me know. The Agency would like to issue this permit as soon as we can. Thank you

Shu-Mei

From: Newton, Larry < LarryNewton@IMTT.Com>
Sent: Thursday, September 26, 2019 2:12 PM
To: Tsai, Shu-Mei < Shu-Mei.Tsai@Illinois.gov>

Subject: [External] Re: NPDES IL0005126 IMTT Illinois - Lemont

Thank you!

Larry Newton, Environmental Manager IMTT ILLINOIS 630-257-3960, office 630-768-0649, cell

From: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>
Sent: Thursday, September 26, 2019 2:06:50 PM
To: Newton, Larry <LarryNewton@IMTT.Com>
Subject: RE: NPDES IL0005126 IMTT Illinois - Lemont

Per your request.

From: Newton, Larry LarryNewton@IMTT.Com
Sent: Thursday, September 26, 2019 10:17 AM

To: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>

Subject: [External] Re: NPDES IL0005126 IMTT Illinois - Lemont

Thank you very much! Would you also be so kind as to provide the Water Quality Based Effluent Analysis completed July 11, 2019 that is referenced in your notes?

Larry Newton | Environmental Manager INTERNATIONAL MATEX TANK TERMINALS 13589 Main Street, Lemont, IL 60439 24420 W. Durkee Road, Channahon, IL 60410 Office (630) 257-3960 | Cell (630) 768-0649 Email Jarrynewton@imtt.com

From: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>
Sent: Thursday, September 26, 2019 8:27 AM
To: Newton, Larry <LarryNewton@IMTT.Com>
Subject: RE: NPDES IL0005126 IMTT Illinois - Lemont

Good morning, Larry:

Enclosed the review note. Please keep in mind, after 15 days and 30 days public notice, the review notice could be not match with the draft permit.

Shu-Mei

From: Newton, Larry LarryNewton@IMTT.Com
Sent: Wednesday, September 25, 2019 3:21 PM
To: Tsai, Shu-Mei Shu-Mei.Tsai@Illinois.gov

Subject: [External] Re: NPDES IL0005126 IMTT Illinois - Lemont

May I receive a copy of the permit reviewer notes for my application? Thank you!

Larry Newton | Environmental Manager INTERNATIONAL MATEX TANK TERMINALS

13589 Main Street, Lemont, IL 60439 24420 W. Durkee Road, Channahon, IL 60410 Office (630) 257-3960 | Cell (630) 768-0649

Email larrynewton@imtt.com

From: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>
Sent: Wednesday, September 25, 2019 7:54 AM
To: Newton, Larry <LarryNewton@IMTT.Com>
Subject: RE: NPDES IL0005126 IMTT Illinois - Lemont

Good morning, Larry:

When will you submit the comments? Please let me know. Thank you

Shu-Mei

From: Newton, Larry LarryNewton@IMTT.Com>
Sent: Tuesday, September 24, 2019 3:50 PM

To: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>

Subject: [External] Re: NPDES IL'0005126 IMTT Illinois - Lemont

We will have additional comments regarding this issue. Can we stop the clock?

Larry Newton | Environmental Manager INTERNATIONAL MATEX TANK TERMINALS 13589 Main Street, Lemont, IL 60439 24420 W. Durkee Road, Channahon, IL 60410 Office (630) 257-3960 | Cell (630) 768-0649 Email larrynewton@imtt.com

From: Tsai, Shu-Mei Sent: Tuesday, September 24, 2019 3:30 PM
To: Newton, Larry LarryNewton@IMTT.Com
Subject: NPDES IL0005126 IMTT Illinois - Lemont

Good afternoon, Larry:

You submitted a comment letter dated July 31, 2019 about vinyl chloride issue. However, the mail sent to different unit. When we received your letter, it had already passed the Public Notice Period.

This is the initial response for your comment:

The State regulation for vinyl chloride is 35 IAC 302.210 not 302.208 g as previously stated in the Public Notice/Fact Sheet for this permit. The Agency has corrected this error for future reference. The Agency included the vinyl chloride effluent limitation of 0.002 mg/L as a daily maximum value as this value is the human health water quality criteria. Previous data from effluent samples indicated there is a reasonable potential to exceed this value. Therefore, the Agency must include this effluent limitation.

The Agency is ready to issue this permit as soon as possible. Please let me know if you have any additional comments or questions. Thank you.

Shu-Mei Tsai,

Environmental Protection Engineer, Industrial Unit Permit Section Division of Water Pollution Control Illinois Environmental Protection Agency

ph: 217-782-0610 fax: 217-782-9891

Shu-Mei.Tsai@Illinois.gov

State of Illinois - CONFIDENTIALITY NOTICE: The information contained in this communication is confidential, may be attorney-client privileged or attorney work product, may constitute inside information or internal deliberative staff communication, and is intended only for the use of the addressee. Unauthorized use, disclosure or copying of this communication or any part thereof is strictly prohibited and may be unlawful. If you have received this communication in error, please notify the sender immediately by return e-mail and destroy this communication and all copies thereof, including all attachments. Receipt by an unintended recipient does not waive attorney-client privilege, attorney work product privilege, or any other exemption from disclosure.

A PARTNERSHIP

Lemont Facility 13589 Main Street Lemont, IL 60439 Phone (630) 257-6222 Fax (630) 257-7135 Jollet Facility 24420 W. Durkee Road Channahon, IL 60410 Phone (815) 423-2500 Fax (815) 423-2525

October 3, 2019

Mr. Darin E. LeCrone, P.E.

Manager, Industrial Unit, Permit Section
Division of Water Pollution Control
Illinois Environmental Protection Agency
1021 North Grand Avenue East
Springfield, IL 62702

Re: IMTT Illinois-Lemont Facility
Draft NPDES Permit IL0005126
Vinyl Chloride Comments

Dear Mr. LeCrone:

Thank you for the opportunity to review the draft NPDES permit for above referenced discharge. We have reviewed the draft permit and find it acceptable except for the effluent limit on outfall 001 for vinyl chloride of a daily maximum of 0.002 mg/L. We believe this limit is inappropriate and respectfully request the Agency review this limit. In support of our request the following is offered.

Background

Outfall 001 discharges to what is the head waters of the I&M Canal on the west side of Route 83. When the Cal Sag Channel was constructed, it physically cut across the I&M Canal, so that now the I&M Canal ends east of Route 83 and then begins again at the IMTT Outfall 001 west of IMTT and Route 83. So the subject discharge is physically the headwaters for the receiving stream, and therefore there is no fish passing the outfall location.

Vinyl Chloride

IMTT operates a groundwater remediation system removing chlorinated solvents from the groundwater. After treatment, the groundwater is discharged to the lagoon system and is discharged through Outfall 001 with the other wastewater. Based on the *reasonable potential* analysis completed by the Agency, the maximum expected vinyl chloride in Outfall 001 is 0.0097 mg/L. (In the third quarter 2019, Outfall 001 contained 0.0081 mg/L vinyl chloride, the highest recorded in the past three years, so the estimate of 0.0097 mg/L appears reasonable).

October 3, 2019 Letter

Page 2 of 3

Treatment

The combined wastewater that is discharged through Outfall 001 is treated through a series of lagoons, with some mechanical aeration. Vinyl chloride is readily air stripped and during the summer months the vinyl chloride levels are consistently below 0.002 mg/L. However, during the winter, air stripping efficiencies decline and ice build-up reduces the volatilization from the lagoon surfaces and vinyl chloride concentrations in Outfall 001 increase.

Effluent Limits

There are no numerical effluent limits for vinyl chloride in the Illinois Adm Code Water Quality Standards. The Agency developed an effluent limit based on a human health criteria of 0.002 mg/L for vinyl chloride, which is the public drinking water standard. Apparently, the Agency applied 0.002 mg/L as protective from exposure to splashing, presumably based on some dermal exposure. This "splash factor" was then applied directly to the effluent as a limit without regard to any allowed mixing zone. As the I&M Canal at the point of discharge is inaccessible to the public, it is not clear whom this limit is intended to be protecting.

Mixing Zone

Under 35 IAC 302.102, IMTT respectfully requests a mixing zone be considered with respect to the vinyl chloride. Based on the maximum potential concentration computed (0.0097 mg/L), only a 5:1 dilution is necessary to assure the human health splash criteria is achieved, which would readily occur within a small mixing zone. Mixing zones are allowed for streams with less than a 3:1 dilution ratio under Section 302.102(b)(8). IMTT would welcome the opportunity to work with the Agency in determining the dilution within a mixing zone for vinyl chloride.

Compliance Schedule

IMTT believes with a mixing zone consideration, no effluent limit is necessary for vinyl chloride. However, if the Agency disagrees with this approach, and the effluent limit of 0.002 mg/L remains for vinyl chloride, then a compliance plan needs to be incorporated into the NPDES Permit before issuance to provide IMTT the time necessary to achieve compliance. The following compliance schedule is proposed if the mixing zone approach or the no public exposure arguments are rejected.

3 months from effective date of permit	Prepare Sampling Plan for vinyl chloride testing
9 months from effective date of permit	Interim progress report on source of vinyl chloride
15 months from effective date of permit	Final report on source of vinyl chloride
21 months from effective date of permit	Report on Treatment Options for removing vinyl chloride
27 months from effective date of permit	Preliminary design completed for removing vinyl chloride
33 months from effective date of permit	Final design and permit application for construction
36 months from effective date of permit	Construction permit issued
48 months from effective date of permit	Construction complete, vinyl chloride limit goes into effect

October 3, 2019 Letter

Page 3 of 3

Closure

The inclusion of the vinyl chloride effluent limit is a significant issue to IMTT, and we do not believe the inclusion is appropriate under the regulations. I request a site visit so that Agency can view the outfall and the lack of public access to the I & M Canal adjacent to the outfall. We would also welcome working with the Agency on developing the appropriate size of the mixing zone that should be applied to vinyl chloride.

On another note, the NPDES permit we are currently operating under includes the following statement –

The discharge from Outfall 001 can flow, by gravity or be pumped, to the Illinois & Michigan Canal.

It is hoped that this statement will be included in the new permit once it becomes effective.

Thank you for the opportunity to provide these comments. We look forward to working with the Agency in finalizing this permit.

Sincerely,

Larry Newton

Environmental Manager

Cc:

Shu-Mei Tsai

Scott Twait

Brian Koch

Tsai, Shu-Mei

From:

Twait, Scott

Sent:

Friday, October 11, 2019 3:40 PM

To: Cc: Tsai, Shu-Mei Koch, Brian

Subject:

RE: NPDES IL0005126 IMTT Illinois - Lemont

Shu-Mei,

There is no mixing available (unless they discharge only during storm events). We will need to develop a response and keep the existing vinyl chloride limit.

Scott

From: Tsai, Shu-Mei

Sent: Friday, October 11, 2019 2:44 PM **To:** Twait, Scott <Scott.Twait@Illinois.gov>

Subject: FW: NPDES IL0005126 IMTT Illinois - Lemont

Scott:

IMTT request a mixing zone for the vinyl chloride. Could you check it. Thank you

Shu-Mei

From: Newton, Larry LarryNewton@IMTT.Com
Sent: Thursday, October 3, 2019 11:37 AM
To: Tsai, Shu-Mei Shu-Mei.Tsai@Illinois.gov

Subject: [External] Re: NPDES IL0005126 IMTT Illinois - Lemont

See attached letter. I'm requesting a site visit to review the outfall. An original will be sent to you via UPS.

Larry Newton | Environmental Manager

INTERNATIONAL MATEX TANK TERMINALS

13589 Main Street, Lemont, IL 60439

24420 W. Durkee Road, Channahon, IL 60410

Office (630) 257-3960 | Cell (630) 768-0649

Email <u>larrynewton@imtt.com</u>

From: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>
Sent: Thursday, September 26, 2019 2:13 PM
To: Newton, Larry <LarryNewton@IMTT.Com>
Subject: RE: NPDES IL0005126 IMTT Illinois - Lemont

Larry:

Please check it and let me know. The Agency would like to issue this permit as soon as we can. Thank you

Shu-Mei

From: Newton, Larry LarryNewton@IMTT.Com
Sent: Thursday, September 26, 2019 2:12 PM
To: Tsai, Shu-Mei Shu-Mei.Tsai@Illinois.gov

Subject: [External] Re: NPDES IL0005126 IMTT Illinois - Lemont

Thank you!

Larry Newton, Environmental Manager IMTT ILLINOIS 630-257-3960, office 630-768-0649, cell

From: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>
Sent: Thursday, September 26, 2019 2:06:50 PM
To: Newton, Larry <LarryNewton@IMTT.Com>
Subject: RE: NPDES IL0005126 IMTT Illinois - Lemont

Per your request.

From: Newton, Larry LarryNewton@IMTT.Com
Sent: Thursday, September 26, 2019 10:17 AM
To: Tsai, Shu-Mei < Shu-Mei.Tsai@Illinois.gov>

Subject: [External] Re: NPDES IL0005126 IMTT Illinois - Lemont

Thank you very much! Would you also be so kind as to provide the Water Quality Based Effluent Analysis completed July 11, 2019 that is referenced in your notes?

Larry Newton | Environmental Manager

INTERNATIONAL MATEX TANK TERMINALS

13589 Main Street, Lemont, IL 60439

24420 W. Durkee Road, Channahon, IL 60410

Office (630) 257-3960 | Cell (630) 768-0649 Email <u>larrynewton@imtt.com</u>

From: Tsai, Shu-Mei < Shu-Mei. Tsai@Illinois.gov>
Sent: Thursday, September 26, 2019 8:27 AM
To: Newton, Larry < Larry Newton@IMTT. Com>

Subject: RE: NPDES IL0005126 IMTT Illinois - Lemont

Good morning, Larry:

Enclosed the review note. Please keep in mind, after 15 days and 30 days public notice, the review notice could be not match with the draft permit.

Shu-Mei

From: Newton, Larry LarryNewton@IMTT.Com
Sent: Wednesday, September 25, 2019 3:21 PM
To: Tsai, Shu-Mei Shu-Mei.Tsai@Illinois.gov

Subject: [External] Re: NPDES IL0005126 IMTT Illinois - Lemont

May I receive a copy of the permit reviewer notes for my application? Thank you!

Larry Newton | Environmental Manager

INTERNATIONAL MATEX TANK TERMINALS

13589 Main Street, Lemont, IL 60439

24420 W. Durkee Road, Channahon, IL 60410

Office (630) 257-3960 | Cell (630) 768-0649 Email <u>larrynewton@imtt.com</u>

From: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>
Sent: Wednesday, September 25, 2019 7:54 AM
To: Newton, Larry <LarryNewton@IMTT.Com>
Subject: RE: NPDES IL0005126 IMTT Illinois - Lemont

Good morning, Larry:

When will you submit the comments? Please let me know. Thank you

Shu-Mei

From: Newton, Larry <a
Subject: [External] Re: NPDES IL0005126 IMTT Illinois - Lemont

We will have additional comments regarding this issue. Can we stop the clock?

Larry Newton | Environmental Manager

INTERNATIONAL MATEX TANK TERMINALS

13589 Main Street, Lemont, I L60439

24420 W. Durkee Road, Channahon, IL 60410

Office (630) 257-3960 | Cell (630) 768-0649 Email <u>larrynewton@imtt.com</u>

From: Tsai, Shu-Mei Sent: Tuesday, September 24, 2019 3:30 PM
To: Newton, Larry LarryNewton@IMTT.Com
Subject: NPDES IL0005126 IMTT Illinois - Lemont

Good afternoon, Larry:

You submitted a comment letter dated July 31, 2019 about vinyl chloride issue. However, the mail sent to different unit. When we received your letter, it had already passed the Public Notice Period.

This is the initial response for your comment:

The State regulation for vinyl chloride is 35 IAC 302.210 not 302.208 g as previously stated in the Public Notice/Fact Sheet for this permit. The Agency has corrected this error for future reference. The Agency included the vinyl chloride effluent limitation of 0.002 mg/L as a daily maximum value as this value is the human health water quality criteria. Previous data from effluent samples indicated there is a reasonable potential to exceed this value. Therefore, the Agency must include this effluent limitation.

The Agency is ready to issue this permit as soon as possible. Please let me know if you have any additional comments or questions. Thank you.

Shu-Mei Tsai,

Environmental Protection Engineer, Industrial Unit Permit Section Division of Water Pollution Control Illinois Environmental Protection Agency

ph: 217-782-0610 fax: 217-782-9891

Shu-Mei.Tsai@lllinois.gov

State of Illinois - CONFIDENTIALITY NOTICE: The information contained in this communication is confidential, may be attorney-client privileged or attorney work product, may constitute inside information or internal deliberative staff communication, and is intended only for the use of the addressee. Unauthorized use, disclosure or copying of this communication or any part thereof is strictly prohibited and may be unlawful. If you have received this communication in error, please notify the sender immediately by return e-mail and destroy this communication and all copies thereof, including all attachments. Receipt by an unintended recipient does not waive attorney-client privilege, attorney work product privilege, or any other exemption from disclosure.

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 (217) 782-3397

JB PRITZKER, GOVERNOR

JOHN J. KIM, DIRECTOR

217/782-0610

October 25, 2019

IMTT Illinois, LLC 13589 Main Street Lemont, Illinois 60439

Re:

IMTT Illinois, LLC

Lemont Facility

NPDES Permit No. IL0005126 Bureau ID# W0311620009

Public Notice Permit

Gentlemen:

Please post the attached Public Notice for the subject discharge for at least a period of thirty days from the date on the Notice in a conspicuous place on your premises.

We have enclosed a copy of the draft NPDES permit on which this official Public Notice is based. If you wish to comment on the draft permit, please do so within 30 days of the Public Notice date. If there are any questions, please contact Shu-Mei Tsai at 217/782-0610 or the address listed above.

Thank you for your cooperation.

Sincerely,

Darin LeCrone, P.E.

Manager, Industrial Unit, Permit Section Division of Water Pollution Control

DEL:SMT:18101001.smt

Attachments: Draft Permit, Public Notice/Fact Sheet

cc: Records Unit

Compliance Assurance Section

Des Plaines Region

CMAP DRSCW 1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 (2 17) 782-3397 JB PRITZKER, GOVERNOR JOHN J. KIM, DIRECTOR

217/782-0610

October 25, 2019

Mr. Edward Karecki U.S. Fish & Wildlife Service Chicago Illinois Field Office 230 South Dearborn Street, Suite 2938 Chicago, Illinois 60604

Re:

IMTT Illinois, LLC

Lemont Facility

NPDES Permit No. IL0005126 Bureau ID# W0311620009

Gentlemen:

In accordance with 40 CFR 124.10, we hereby submit a copy of the Public Notice/Fact Sheet for the above discharger. If no written reply is received at the indicated address, attention: NPDES PN Clerk within 30 days of the date of this request, the Agency will assume that the U.S. Fish and Wildlife Service has no objection to the proposed discharge.

Sincerely,

Daw E. Le hone/ MX

Manager, Industrial Unit, Permit Section Division of Water Pollution Control

DEL:SMT:18101001.smt

Attachment: Public Notice/Fact Sheet

cc:

Records Unit

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 · (217) 782-3397

JB PRITZKER, GOVERNOR

JOHN J. KIM, DIRECTOR

217/782-0610

October 25, 2019

Municipal Clerk 418 Main Street Lemont, Illinois 60439

Re:

IMTT Illinois, LLC

Lemont Facility

NPDES Permit No. IL0005126 Bureau ID# W0311620009 Public Notice of Permit

Municipal Clerk:

In accordance with the requirements of the Illinois Pollution Control Board regulations of 35 Ill. Adm. Code 309.109(a)(2)(A), the attached National Pollutant Discharge Elimination System Public Notice is sent to a municipality in the vicinity of the applicant. The Agency understands that the applicant may not be associated with the municipality to which it is sent.

Please post the attached National Pollutant Discharge Elimination System Public Notice for a period of 30 days. In addition, please complete and return the enclosed postcard indicating the date of posting. Should you choose not to post the attached notice, please indicate so on the postcard and return.

Thank you for your cooperation.

Sincerely,

Davin C. Le Cranf MIK Darin Le Crone, P.E.

Manager, Industrial Unit, Permit Section Division of Water Pollution Control

DEL:SMT:18101001.smt

Attachments: Public Notice/Fact Sheet, Post Card

cc: Records Unit

NPDES Permit No. IL0005126 Notice No. SMT:18101001.smt

Public Notice Beginning Date: October 25, 2019

Public Notice Ending Date: November 25, 2019

National Pollutant Discharge Elimination System (NPDES)
Permit Program

Draft Reissued NPDES Permit to Discharge into Waters of the State

Public Notice/Fact Sheet Issued By:

Illinois Environmental Protection Agency Bureau of Water Division of Water Pollution Control Permit Section 1021 North Grand Avenue East Post Office Box 19276 Springfield, Illinois 62794-9276 217/782-0610

Name and Address of Discharger:

IMTT Illinois 13589 Main Street Lemont, Illinois 60439 Name and Address of Facility:

IMTT Illinois – Lemont Facility 13589 Main Street Lemont, Illinois 60439 (Cook County)

The Illinois Environmental Protection Agency (IEPA) has made a tentative determination to issue a NPDES permit to discharge into the waters of the state and has prepared a draft permit and associated fact sheet for the above named discharger. The Public Notice period will begin and end on the dates indicated in the heading of this Public Notice/Fact Sheet. The last day comments will be received will be on the Public Notice period ending date unless a commentor demonstrating the need for additional time requests an extension to this comment period and the request is granted by the IEPA. Interested persons are invited to submit written comments on the draft permit to the IEPA at the above address. Commentors shall provide his or her name and address and the nature of the issues proposed to be raised and the evidence proposed to be presented with regards to those issues. Commentors may include a request for public hearing. Persons submitting comments and/or requests for public hearing shall also send a copy of such comments or requests to the permit applicant. The NPDES permit and notice number(s) must appear on each comment page.

The application, engineer's review notes including load limit calculations, Public Notice/Fact Sheet, draft permit, comments received, and other documents are available for inspection and may be copied at the IEPA between 9:30 a.m. and 3:30 p.m. Monday through Friday when scheduled by the interested person.

If written comments or requests indicate a significant degree of public interest in the draft permit, the permitting authority may, at its discretion, hold a public hearing. Public notice will be given 45 days before any public hearing. Response to comments will be provided when the final permit is issued. For further information, please call Shu-Mei Tsai at 217/782-0610.

The applicant is engaged in the operation of a for-hire leasing facility that is comprised of numerous storage tanks for on-shore bulk liquids storage and distribution (SIC 4226). Plant operation results in an average discharge of 0.238 MGD of combined effluent wastewater from outfall 001, 0.0015 MGD of treated sanitary wastewater from internal outfall A01, 0.0015 MGD of treated sanitary wastewater from internal outfall B01, 0.0008 MGD of treated remediation water from internal outfall C01, an intermittent discharge of stormwater runoff from outfall 002, and an intermittent discharge of stormwater runoff from outfall 003.

Public Notice/Fact Sheet -- Page 2 -- NPDES Permit No. IL0005126

Application is made for existing discharge which is located in Cook County, Illinois. The following information identifies the discharge point, receiving waters and waters classifications:

Outfall	Receiving Water	Latitude		Longitude		Waters Classification	Biological Waters Characterization
001	Illinois and Michigan Canal	41° 41' 36.59"	North	87° 57' 10.87"	West	General Use	Not Rated
002	Illinois and Michigan Canal	41° 41' 33.53"	North	87° 57' 19. 62"	West	General Use	Not Rated
003	Calumet Sag Channel	41° 41′ 36.24"	North	87° 56' 37.66"	West	Chicago Area Waterway System Aquatic Life Use A Water.	Not Rated

To assist you further in identifying the location of the discharge please see the attached map.

The subject facility discharges to the Illinois and Michigan Canal at a point where 0 cfs, via Outfalls 001 and 002, of flow exists upstream of the outfall during critical 7Q10 low-flow conditions. The Illinois and Michigan Canal is not listed as a biologically significant stream in the 2008 Illinois Department of Natura Resources Publication Integrating Multiple Taxa in a Biological Stream Rating System, nor is it given an integrity rating in that document. The Illinois and Michigan Canal, Waterbody Segment, GU, is not listed on the draft 2016 Illinois Integrated Water Quality Report and Section 303(d) List Since it has not been assessed. The Illinois and Michigan Canal is not subject to enhanced dissolved oxygen standards.

The subject facility discharges to the Calumet-Sag Channel at a point where 0 cfs, via Outfall 003, of flow exists upstream of the outfall during critical 7Q10 low-flow conditions. The Calumet-Sag Channel is not listed as a biological significant stream in the 2008 Illinois Department of Natural Resources Publication Integrating Multiple Taxa in a Biological Stream Rating System, nor is it given an integrity rating in that document. The Calumet-Sag Channel, Waterbody Segment, H-01, is listed on the draft 2016 Illinois Integrated Water Quality Report and Section 303(d) List. The Cal-Sag Channel is not subject to enhanced dissolved oxygen standards.

The following parameters have been identified as the pollutants causing impairment:

Designated Uses	Pollutants Causing Impairment
Indigenous Aquatic Life Use	Dissolved Oxygen (non-Pollutant), Iron, Phosphorus, and Total Suspended Solids (TSS).
Fish Consumption Use	Mercury and Polychlorinated Biphenyls (PCB's)

The discharges from the facility shall be monitored and limited at all times as follows:

Outfall 001 Combined Effluent Wastewater (DAF = 0.238 MGD)

	LOAD LIMITS lbs/day DAF (DMF)			CONCEN LIMITS		
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	REGULATION	30 DAY AVERAGE	DAILY MAXIMUM	REGULATION
Flow (MGD)						4
рН				9		35 IAC 302.204
BOD₅				30	60	35 IAC 304. 120
Temperature				14		35 IAC 302.211
Total Residual Chlorine					0.05	35 IAC 302.208 40 CFR 125.3
Total Suspended Solids				30	60	35 IAC 304.120

Electronic Filing: Received, Clerk's Office 05/20/2020 Received

Public Notice/Fact Sheet -- Page 3 -- NPDES Permit No. IL0005126

OCT 2 5 2019

	LOAD LIMITS lbs/day DAF (DMF)			CO	ic Noticed		
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	REGULATION	30 DAY		DAILY MAXIMUM	REGULATION
Oil and Grease				15	Y.	30	35 IAC 304.124
Iron (Total)				2		4	35 IAC 304.124
Barium				2		4	35 IAC 304.124
Chloride					Monitor C	nly	35 IAC 302.208(g)
Vinyl Chloride						0.002	35 IAC 302.208(g)
Ammonia				30 day Average	Weekly Average		35 IAC 302.212
March – May September - October	:6			3.2	7.9	15.0	
June – August				2.3	5.8	15.0	
November - February				5.6	14.0	15.0	
Dissolved Oxygen				Monthly Average not less than	Weekly Average not less than	e Daily	35 IAC 302.206
March - July				5	6		
August – February				3.5	4	5.5	
Stormwater						40 (CFR 122.26(b)(14)(xi)
Outfall A01 Treated Sanitary	Wastewater	(DAF = 0.015	MGD)				
Flow (MGD)			- 25				•
рН							35 IAC 302.204
BOD₅	3.75	7.50		30		60	35 IAC 304.120
Total Suspended Solids	3.75	7.50		30		60	35 IAC 304.120
Fecal Coliform						400/100 ml	35 IAC 302.209
Outfall B01 Treated Sanitary	Wastewater	(DAF = 0.015	MGD)				
Flow (MGD)							
pH			γ				35 IAC 302.204
BOD₅	3.75	7.50		30		60	35 IAC 304.120
Total Suspended Solids	3.75	7.50		30		60	35 IAC 304.120
Fecal Coliform				(4)		400/100 ml	35 IAC 302.209

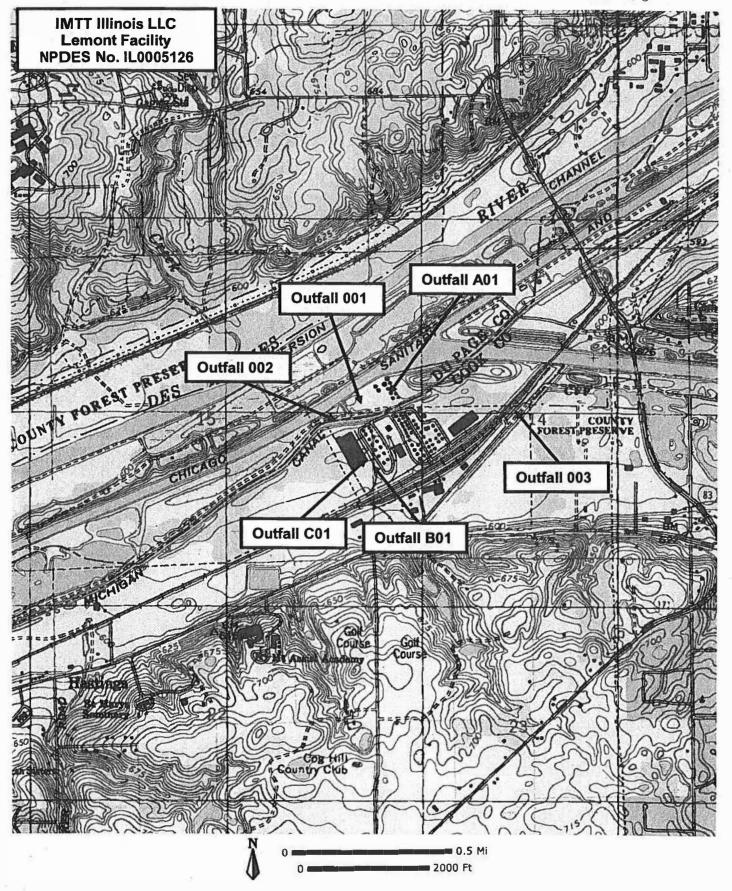
Electronic Filing: Received, Clerk's Office 05/20/2020

R 215

Public Notice/Fact Sheet -- Page 4 -- NPDES Permit No. IL0005126

	LOAD LIMI DAF (CONCENTE LIMITS I		
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	REGULATION	30 DAY AVERAGE	DAILY MAXIMUM	REGULATION
Outfall C01 Treated	Remediation Wa	ater (DAF = 0.	.0008 MGD)			
Flow (MGD)						
Total Organic Carbon	* _			Monitor (Only	35 IAC 309.146
1,2 Dichloroethane			7	Monitor (Only	35 IAC 309.146
					€	
Outfall 002 Stormwater	r (Intermittent	Discharge)				
Flow (MGD)	,					
Volatile Organic Compour	nds			Monitor (Only	35 IAC 309.146
Stormwater					40 CFR 1	2 2.26(b)(14)(xi)
Outfall 003 Stormwater	(Intermittent Di	scharge)				
Flow (MGD)	i i					
Volatile Organic Compou	nds			Monitor	Only	35 IAC 309.146
Stormwater					40	CFR 122.26(b)(14)(xi)

Load Limit Calculations:


- A. Outfall A01, load limit calculations for the following pollutant parameters were based on a design average flow of 0.015 MGD and using the formula of average or maximum flow (MGD) X concentration limit (mg/l) X 8.34 = the average or maximum load limit (lbs/day): BOD₅ and Total Suspended Solids.
- B. Outfall B01, load limit calculations for the following pollutant parameters were based on a design average flow of 0.015 MGD and using the formula of average or maximum flow (MGD) X concentration limit (mg/l) X 8.34 = the average or maximum load limit (lbs/day): BOD₅ and Total Suspended Solids.

The load limits appearing in the permit will be the more stringent of the State and Federal Guidelines.

The following explain the conditions of the proposed permit:

The Special Conditions clarify flow measurement and reporting, pH, temperature, Total Residual Chlorine, monitoring location, discharge monitoring report submission, Class K Operator, 126 priority pollutants, and stormwater.

OCT 2 5 2019

Electronic Filing: Received, Clerk's Office 05/20/2020

NPDES Permit No. IL0005126

OCT 2 5 2019

Illinois Environmental Protection Agency

Public Notice

Division of Water Pollution Control

1021 North Grand Avenue East

Post Office Box 19276

Springfield, Illinois 62794-9276

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

Reissued (NPDES) Permit

Expiration Date:

Issue Date: Effective Date: Modification Date:

Name and Address of Permittee:

Facility Name and Address:

IMTT Illinois 13589 Main Street Lemont, Illinois 60439 IMTT Illinois – Lemont Facility 13589 Main Street Lemont, Illinois 60439 (Cook County)

Discharge Number and Name:

Receiving Waters:

001 Combined Effluent WastewaterA01 Treated Sanitary Wastewater

Illinois and Michigan Canal

B01 Treated Sanitary Wastewater
C01 Treated Remediation Water

002 Stormwater Runoff

003 Stormwater Runoff

Illinois and Michigan Canal Calumet Sag Channel

In compliance with the provisions of the Illinois Environmental Protection Act, Title 35 of Ill. Adm. Code, Subtitle C and/or Subtitle D, Chapter 1, and the Clean Water Act (CWA), the above-named permittee is hereby authorized to discharge at the above location to the above-named receiving stream in accordance with the standard conditions and attachments herein.

Permittee is not authorized to discharge after the above expiration date. In order to receive authorization to discharge beyond the expiration date, the permittee shall submit the proper application as required by the Illinois Environmental Protection Agency (IEPA) not later than 180 days prior to the expiration date.

Darin E. LeCrone, P.E. Manager, Industrial Unit, Permit Section Division of Water Pollution Control

DEL:SMT:18101001.smt

NPDES Permit No. IL0005126

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall 001 Combined E	ffluent Wastewater (DAF = 0.23	8 MGD)				
	LOAD LIMITS lbs/day <u>DAF (DMF)</u>	CONCENT LIMITS				
PARAMETER	30 DAY DAILY AVERAGE MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	SAMPLE TYPE	
The discharge consists 1. Boiler Blowdo 2. Water Softene	wn			96 *		
 Reverse Osm Laboratory W Treated Sanit Safety Showe 	osis Reject aste ary Wastewater (A01 and B01)			*		
 Air Compress Vehicle Wash 	or Cooling Water down atic Test Water unoff* er			741		
14. Tank Steam C						
Flow (MGD)	See Special Condition 1			1/Month	Measurement	
рН	See Special Condition 2			1/Month	Grab	
BOD ₅		30	60	1/Month	Grab	
Temperature	See Special Condition 3.			1/Month	Single Reading	

•						
рН	See Special Condition 2				1/Month	Grab
BOD ₅		30		60	1/Month	Grab
Temperature	See Special Condition 3.				1/Month	Single Reading
Total Residual Chlorine	See Special Condition 4.			1/Month	Grab	
Total Suspended Solids		30		60	1/Month	Grab
Oil and Grease	R	15		30	1/Month	Grab
Iron (Total)		2		4	1/Month	Composite
Chloride			Monitor Only		1/Month	Grab
Vinyl Chloride	See Special Condition 4.			0.002	1/Month	Grab
Ammonia		30 Day Average	Weekly Average	Daily Maximum	1/Month	Grab
Spring/Fall		3.2	7.9	15.0		
Summer		2.3	5.8	15.0		
Winter		5.6	14.0	15.0		
Dissolved Oxygen		Monthly Average not less than	Weekly Average not- less than	Daily Minimum	1/Month	Grab
March - July	*	5	6			
August - February		3.5	4	5.5		
Stormwater	See Special Condition 12					

DRA 220

OCT 2 5 2019

NPDES Permit No. IL0005126

Public Noticed

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall A01 Treated Sanitary Wastewater (DAF = 0.015 MGD)

	LOAD LIMITS lbs/day DAF (DMF)		CONCEN LIMITS	TRATION S mg/L			
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	ě	SAMPLE TYPE
Flow (MGD)	See Special	Condition 1.			1/Month		Measure
рН	See Special	Condition 2			1/Month		Grab
BOD₅	3.75	7.50	30	60	1/Month		Grab
Total Suspended Solids	3.75	7.50	30	60	1/Month		Grab
Fecal Coliform	See Special	Condition 5.		400/100 ml	1/Month		Grab

See Special Condition 13

NPDES Permit No. IL0005126

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall B01 Treated Sanitary Wastewater

(DAF = 0.015 MGD)

i.e.	LOAD LIMITS lbs/day DAF (DMF)			TRATION S mg/L		
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	SAMPLE TYPE
Flow (MGD)	See Special	Condition 1.			1/Month	Measure
рН	See Special	Condition 2			1/Month	Grab
BOD ₅	3.75	7.50	30	60	1/Month	Grab
Total Suspended Solids	3.75	7 .50	30	60	1/Month	Grab
Fecal Coliform	See Special	Condition 5.		400/100 ml	1/Month	Grab

See Special Condition 13

Page 5

NPDES Permit No. IL0005126

Effluent Limitations and Monitoring

OCT 2 5 2019

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall C01 Remediation Water* (DAF = 200 gpd)

	LOAD LIMITS lbs/day <u>DAF (DMF)</u>			TRATION S mg/L			
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	000	SAMPLE TYPE
Flow (MGD)	See Special	Condition 1.			1/Month		Measure
рН	See Special	Condition 2			1/Month		Grab
Total Organic Carbon			Monito	or Only	1/Quarter**		Grab
1,2 Dichloroethane			Monito	or Only	1/Quarter**		Grab

^{* -} See Special Condition 14.

^{** -} See Special Condition 15.

Page 6

NPDES Permit No. IL0005126

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall 002 Stormwater (Intermittent Discharge)

		IITS lbs/day (DMF)	CONCEN LIMITS			
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	SAMPLE TYPE
Flow (MGD)	See Special C	Condition 1.			2/Year	Measure
Volatile Organic Compounds	See Special C	Condition 16.	Monito	or Only	2/Year	Grab
Stormwater	See Special C	Condition 12.				

Electronic Filing: Received, Clerk's Office 05/20/2020

NPDES Permit No. IL0005126

OCT 2 5 2019

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shalf all times as follows:

Outfall 003 Stormwater

Volatile Organic Compounds

(Intermittent Discharge)

LOAD LIMITS Ibs/day DAF (DMF)

CONCENTRATION LIMITS mg/l

DAILY 30 DAY **MAXIMUM**

DAILY

SAMPLE

SAMPLE **TYPE**

PARAMETER

AVERAGE

30 DAY

AVERAGE

MAXIMUM

FREQUENCY 2/Year

Flow (MGD)

See Special Condition 1. See Special Condition 16.

Monitor Only

2/Year

Measure

Stormwater

See Special Condition 12.

Grab

NPDES Permit No. IL0005126

Special Conditions

SPECIAL CONDITION 1. Flow shall be measured in units of Million Gallons per Day (MGD) and reported as a nononthly average and a daily maximum on the Discharge Monitoring Report.

SPECIAL CONDITION 2. The pH shall be in the range 6.5 to 9.0. The monthly minimum and monthly maximum values shall be reported on the DMR form.

<u>SPECIAL CONDITION 3.</u> This facility is not allowed any mixing with the receiving stream in order to meet applicable water quality thermal limitations. Therefore, discharge of wastewater from this facility must meet the following thermal limitations prior to discharge into the receiving stream.

A. The discharge must not exceed the maximum limits in the following table during more than one percent of the hours in the 12 month period ending with any month. Moreover, at no time shall the water temperature of the discharge exceed the maximum limits in the following table by more the 1.7° C (3° F).

	Jan.	Feb.	Mar.	<u>April</u>	May	<u>June</u>	<u>July</u>	Aug.	Sept.	Oct.	Nov.	Dec.
°F	60	60	60	90	90	90	90	90	90	90	90	60
°C	16	16	16	32	32	32	32	32	32	32	32	16

- B. In addition, the discharge shall not cause abnormal temperature changes that may adversely affect aquatic life unless caused by natural conditions.
- C. The discharge shall not cause the maximum temperature rise above natural temperatures to exceed 2.8° C (5° F).
- D. The monthly maximum value shall be reported on the DMR form.

<u>SPECIAL CONDITION 4.</u> All samples for Total Residual Chlorine shall be analyzed by an applicable method contained in 40 CFR 136, equivalent in accuracy to low-level amperometric titration. Any analytical variability of the method used shall be considered when determining the accuracy and precision of the results obtained.

SPECIAL CONDITION 5. The daily maximum fecal coliform count shall not exceed 400 per 100 ml.

<u>SPECIAL CONDITION 6.</u> The Permittee shall record monitoring results on Discharge Monitoring Report (DMR) electronic forms using one such form for each outfall each month.

In the event that an outfall does not discharge during a monthly reporting period, the DMR Form shall be submitted with no discharge indicated.

The Permittee is required to submit electronic DMRs (NetDMRs) instead of mailing paper DMRs to the IEPA unless a waiver has been granted by the Agency. More information, including registration information for the NetDMR program, can be obtained on the IEPA website, https://www2.illinois.gov/epa/topics/water-quality/surface-water/netdmr/Pages/guick-answer-guide.aspx

The completed Discharge Monitoring Report forms shall be submitted to IEPA no later than the 25th day of the following month, unless otherwise specified by the permitting authority.

Permittees that have been granted a waiver shall mail Discharge Monitoring Reports with an original signature to the IEPA at the following address:

Illinois Environmental Protection Agency Division of Water Pollution Control Attention: Compliance Assurance Section, Mail Code # 19 1021 North Grand Avenue East Post Office Box 19276 Springfield, Illinois 62794-9276

<u>SPECIAL CONDITION7.</u> The use or operation of this facility shall be by or under the supervision of a Certified Class K operator.

<u>SPECIAL CONDITION 8.</u> If an applicable effluent standard or limitation is promulgated under Sections 301(b)(2)(C) and (D), 304(b)(2), and 307(a)(2) of the Clean Water Act and that effluent standard or limitation is more stringent than any effluent limitation in the permit or controls a pollutant not limited in the NPDES Permit, the Agency shall revise or modify the permit in accordance with the more stringent standard or prohibition and shall so notify the permittee.

Electronic Filing: Received, Clerk's Office 05/20/202

Page 9

NPDES Permit No. IL0005126

OCT 2 5 2019

Special Conditions

Public Noticed

SPECIAL CONDITION 9. The effluent, alone or in combination with other sources, shall not cause a violation of any applicable water quality standard outlined in 35 III. Adm. Code 302.

SPECIAL CONDITION 10. In the event the permittee shall require the use of water treatment additives other than those previously approved by the Agency, or if the permittee increases the feed rate or quantity of the additives used beyond what has previously been approved by the Agency, the permittee shall request a modification of this permit in accordance with the Standard Conditions - Attachment H.

<u>SPECIAL CONDITION 11.</u> Samples taken in compliance with the effluent monitoring requirements shall be taken at a point representative of the discharge, but prior to entry into the receiving stream.

SPECIAL CONDITION 12.

STORM WATER POLLUTION PREVENTION PLAN (SWPPP)

- A. A storm water pollution prevention plan shall be maintained by the permittee for the storm water associated with industrial activity at this facility. The plan shall identify potential sources of pollution which may be expected to affect the quality of storm water discharges associated with the industrial activity at the facility. In addition, the plan shall describe and ensure the implementation of practices which are to be used to reduce the pollutants in storm water discharges associated with industrial activity at the facility and to assure compliance with the terms and conditions of this permit. The permittee shall modify the plan if substantive changes are made or occur affecting compliance with this condition.
 - 1. Waters not classified as impaired pursuant to Section 303(d) of the Clean Water Act.

Unless otherwise specified by federal regulation, the storm water pollution prevention plan shall be designed for a storm event equal to or greater than a 25-year 24-hour rainfall event.

2. Waters classified as impaired pursuant to Section 303(d) of the Clean Water Act

For any site which discharges directly to an impaired water identified in the Agency's 303(d) listing, and if any parameter in the subject discharge has been identified as the cause of impairment, the storm water pollution prevention plan shall be designed for a storm event equal to or greater than a 25-year 24-hour rainfall event. If required by federal regulations, the storm water pollution prevention plan shall adhere to a more restrictive design criteria.

- B. The operator or owner of the facility shall make a copy of the plan available to the Agency at any reasonable time upon request.
 - Facilities which discharge to a municipal separate storm sewer system shall also make a copy available to the operator of the municipal system at any reasonable time upon request.
- C. The permittee may be notified by the Agency at any time that the plan does not meet the requirements of this condition. After such notification, the permittee shall make changes to the plan and shall submit a written certification that the requested changes have been made. Unless otherwise provided, the permittee shall have 30 days after such notification to make the changes.
- D. The discharger shall amend the plan whenever there is a change in construction, operation, or maintenance which may affect the discharge of significant quantities of pollutants to the waters of the State or if a facility inspection required by paragraph H of this condition indicates that an amendment is needed. The plan should also be amended if the discharger is in violation of any conditions of this permit, or has not achieved the general objective of controlling pollutants in storm water discharges. Amendments to the plan shall be made within 30 days of any proposed construction or operational changes at the facility, and shall be provided to the Agency for review upon request.
- E. The plan shall provide a description of potential sources which may be expected to add significant quantities of pollutants to storm water discharges, or which may result in non-storm water discharges from storm water outfalls at the facility. The plan shall include, at a minimum, the following items:
 - 1. A topographic map extending one-quarter mile beyond the property boundaries of the facility, showing: the facility, surface water bodies, wells (including injection wells), seepage pits, infiltration ponds, and the discharge points where the facility's storm water discharges to a municipal storm drain system or other water body. The requirements of this paragraph may be included on the site map if appropriate. Any map or portion of map may be withheld for security reasons.
 - 2. A site map showing:
 - The storm water conveyance and discharge structures;
 - ii. An outline of the storm water drainage areas for each storm water discharge point;

NPDES Permit No. IL0005126

Special Conditions

- iii. Paved areas and buildings;
- iv. Areas used for outdoor manufacturing, storage, or disposal of significant materials, including activities that generate significant quantities of dust or particulates.
- v. Location of existing storm water structural control measures (dikes, coverings, detention facilities, etc.);
- vi. Surface water locations and/or municipal storm drain locations
- vii. Areas of existing and potential soil erosion;
- viii. Vehicle service areas;
- ix. Material loading, unloading, and access areas.
- Areas under items iv and ix above may be withheld from the site for security reasons.
- A narrative description of the following:
 - The nature of the industrial activities conducted at the site, including a description of significant materials that are treated, stored or disposed of in a manner to allow exposure to storm water;
 - Materials, equipment, and vehicle management practices employed to minimize contact of significant materials with storm water discharges;
 - iii. Existing structural and non-structural control measures to reduce pollutants in storm water discharges;
 - iv. Industrial storm water discharge treatment facilities;
 - Methods of onsite storage and disposal of significant materials.
- 4. A list of the types of pollutants that have a reasonable potential to be present in storm water discharges in significant quantities. Also provide a list of any pollutant that is listed as impaired in the most recent 303(d) report.
- 5. An estimate of the size of the facility in acres or square feet, and the percent of the facility that has impervious areas such as pavement or buildings.
- 6. A summary of existing sampling data describing pollutants in storm water discharges.
- F. The plan shall describe the storm water management controls which will be implemented by the facility. The appropriate controls shall reflect identified existing and potential sources of pollutants at the facility. The description of the storm water management controls shall include:
 - Storm Water Pollution Prevention Personnel Identification by job titles of the individuals who are responsible for developing, implementing, and revising the plan.
 - 2. Preventive Maintenance Procedures for inspection and maintenance of storm water conveyance system devices such as oil/water separators, catch basins, etc., and inspection and testing of plant equipment and systems that could fail and result in discharges of pollutants to storm water.
 - Good Housekeeping Good housekeeping requires the maintenance of clean, orderly facility areas that discharge storm water.
 Material handling areas shall be inspected and cleaned to reduce the potential for pollutants to enter the storm water conveyance system.
 - 4. Spill Prevention and Response Identification of areas where significant materials can spill into or otherwise enter the storm water conveyance systems and their accompanying drainage points. Specific material handling procedures, storage requirements, spill cleanup equipment and procedures should be identified, as appropriate. Internal notification procedures for spills of significant materials should be established.
 - 5. Storm Water Management Practices Storm water management practices are practices other than those which control the source of pollutants. They include measures such as installing oil and grit separators, diverting storm water into retention basins, etc. Based on assessment of the potential of various sources to contribute pollutants, measures to remove pollutants

Electronic Filing: Received, Clerk's Office 05/20/2020 A F22

Page 11

NPDES Permit No. IL0005126

OCT 2 5 2019

Special Conditions

Public Noticed

from storm water discharge shall be implemented. In developing the plan, the following management practices shall be considered:

- i. Containment Storage within berms or other secondary containment devices to prevent leaks and spills from entering storm water runoff. To the maximum extent practicable storm water discharged from any area where material handling equipment or activities, raw material, intermediate products, final products, waste materials, by-products, or industrial machinery are exposed to storm water should not enter vegetated areas or surface waters or infiltrate into the soil unless adequate treatment is provided.
- ii. Oil & Grease Separation Oil/water separators, booms, skimmers or other methods to minimize oil contaminated storm water discharges.
- Debris & Sediment Control Screens, booms, sediment ponds or other methods to reduce debris and sediment in storm water discharges.
- iv. Waste Chemical Disposal Waste chemicals such as antifreeze, degreasers and used oils shall be recycled or disposed of in an approved manner and in a way which prevents them from entering storm water discharges.
- v. Storm Water Diversion Storm water diversion away from materials manufacturing, storage and other areas of potential storm water contamination. Minimize the quantity of storm water entering areas where material handling equipment of activities, raw material, intermediate products, final products, waste materials, by-products, or industrial machinery are exposed to storm water using green infrastructure techniques where practicable in the areas outside the exposure area, and otherwise divert storm water away from exposure area.
- vi. Covered Storage or Manufacturing Areas Covered fueling operations, materials manufacturing and storage areas to prevent contact with storm water.
- vii. Storm Water Reduction Install vegetation on roofs of buildings within adjacent to the exposure area to detain and evapotranspirate runoff where precipitation falling on the roof is not exposed to contaminants, to minimize storm water runoff; capture storm water in devices that minimize the amount of storm water runoff and use this water as appropriate based on quality.
- Sediment and Erosion Prevention The plan shall identify areas which due to topography, activities, or other factors, have a high potential for significant soil erosion. The plan shall describe measures to limit erosion.
- 7. Employee Training Employee training programs shall inform personnel at all levels of responsibility of the components and goals of the storm water pollution control plan. Training should address topics such as spill response, good housekeeping and material management practices. The plan shall identify periodic dates for such training.
- 8. Inspection Procedures Qualified plant personnel shall be identified to inspect designated equipment and plant areas. A tracking or follow-up procedure shall be used to ensure appropriate response has been taken in response to an inspection. Inspections and maintenance activities shall be documented and recorded.
- G. Non-Storm Water Discharge The plan shall include a certification that the discharge has been tested or evaluated for the presence of non-storm water discharge. The certification shall include a description of any test for the presence of non-storm water discharges, the methods used, the dates of the testing, and any onsite drainage points that were observed during the testing. Any facility that is unable to provide this certification must describe the procedure of any test conducted for the presence of non-storm water discharges, the test results, potential sources of non-storm water discharges to the storm sewer, and why adequate tests for such storm sewers were not feasible.
- H. Quarterly Visual Observation of Discharges The requirements and procedures for quarterly visual observations are applicable to all outfalls covered by this condition.
 - You must perform and document a quarterly visual observation of a storm water discharge associated with industrial activity
 from each outfall. The visual observation must be made during daylight hours. If no storm event resulted in runoff during
 daylight hours from the facility during a monitoring quarter, you are excused from the visual observations requirement for that
 quarter, provided you document in your records that no runoff occurred. You must sign and certify the document.
 - 2. Your visual observation must be made on samples collected as soon as practical, but not to exceed 1 hour or when the runoff or snow melt begins discharging from your facility. All samples must be collected from a storm event discharge that is greater than 0.1 inch in magnitude and that occurs at least 72 hours from the previously measureable (greater than 0.1 inch rainfall) storm event. The observation must document: color, odor, clarity, floating solids, settled solids, suspended solids, foam, oil sheen, and other obvious indicators of storm water pollution. If visual observations indicate any unnatural color, odor, turbidity,

NPDES Permit No. IL0005126

Special Conditions

floatable material, oil sheen or other indicators of storm water pollution, the permittee shall obtain a sample and monitor for the parameter or the list of pollutants in Part E.4.

- 3. You must maintain your visual observation reports onsite with the SWPPP. The report must include the observation date and time, inspection personnel, nature of the discharge (i.e., runoff or snow melt), visual quality of the storm water discharge (including observations of color, odor, floating solids, settled solids, suspended solids, foam, oil sheem, and other obvious indicators of storm water pollution), and probable sources of any observed storm water contamination.
- 4. You may exercise a waiver of the visual observation requirement at a facility that is inactive or unstaffed, as long as there are no industrial materials or activities exposed to storm water. If you exercise this waiver, you must maintain a certification with your SWPPP stating that the site is inactive and unstaffed, and that there are no industrial materials or activities exposed to storm water.
- 5. Representative Outfalls If your facility has two or more outfalls that you believe discharge substantially identical effluents, based on similarities of the industrial activities, significant materials, size of drainage areas, and storm water management practices occurring within the drainage areas of the outfalls, you may conduct visual observations of the discharge at just one of the outfalls and report that the results also apply to the substantially identical outfall(s).
- 6. The visual observation documentation shall be made available to the Agency and general public upon written request.
- 1. The permittee shall conduct an annual facility inspection to verify that all elements of the plan, including the site map, potential pollutant sources, and structural and non-structural controls to reduce pollutants in industrial storm water discharges are accurate. Observations that require a response and the appropriate response to the observation shall be retained as part of the plan. Records documenting significant observations made during the site inspection shall be submitted to the Agency in accordance with the reporting requirements of this permit.
- J. This plan should briefly describe the appropriate elements of other program requirements, including Spill Prevention Control and Countermeasures (SPCC) plans required under Section 311 of the CWA and the regulations promulgated there under, and Best Management Programs under 40 CFR 125.100.
- K. The plan is considered a report that shall be available to the public at any reasonable time upon request.
- L. The plan shall include the signature and title of the person responsible for preparation of the plan and include the date of initial preparation and each amendment thereto.
- M. Facilities which discharge storm water associated with industrial activity to municipal separate storm sewers may also be subject to additional requirement imposed by the operator of the municipal system

Construction Authorization

Authorization is hereby granted to construct treatment works and related equipment that may be required by the Storm Water Pollution Prevention Plan developed pursuant to this permit.

This Authorization is issued subject to the following condition(s).

- N. If any statement or representation is found to be incorrect, this authorization may be revoked and the permittee there upon waives all rights there under.
- O. The issuance of this authorization (a) does not release the permittee from any liability for damage to persons or property caused by or resulting from the installation, maintenance or operation of the proposed facilities; (b) does not take into consideration the structural stability of any units or part of this project; and (c) does not release the permittee from compliance with other applicable statutes of the State of Illinois, or other applicable local law, regulations or ordinances.
- P. Plans and specifications of all treatment equipment being included as part of the stormwater management practice shall be included in the SWPPP.
- Q. Construction activities which result from treatment equipment installation, including clearing, grading and excavation activities which result in the disturbance of one acre or more of land area, are not covered by this authorization. The permittee shall contact the IEPA regarding the required permit(s).

REPORTING

R. The facility shall submit an electronic copy of the annual inspection report to the Illinois Environmental Protection Agency at epa.npdes.inspection@illinois.gov. The report shall include results of the annual facility inspection which is required by Part I of this condition. The report shall also include documentation of any event (spill, treatment unit malfunction, etc.) which would require

NPDES Permit No. IL0005126

OCT 2 5 201

Special Conditions

Public Noticed

an inspection, results of the inspection, and any subsequent corrective maintenance activity. The report shall be completed and signed by the authorized facility employee(s) who conducted the inspection(s). The annual inspection report is considered a public document that shall be available at any reasonable time upon request.

- S. The first report shall contain information gathered during the one year time period beginning with the effective date of coverage under this permit and shall be submitted no later than 60 days after this one year period has expired. Each subsequent report shall contain the previous year's information and shall be submitted no later than one year after the previous year's report was due.
- T. If the facility performs inspections more frequently than required by this permit, the results shall be included as a dditional information in the annual report.
- U. The permittee shall retain the annual inspection report on file at least 3 years. This period may be extended by request of the Illinois Environmental Protection Agency at any time.
- V. Annual inspection reports shall be submitted to one of the following addresses:
 - a. Electronic Quarterly Reposts should be submitted to

epa.indannualinsp@illinois.gov

b. If electronic submittal is unavailable, reports should be mailed to:

Illinois Environmental Protection Agency Division of Water Pollution Control Compliance Assurance Section, Mail Code #19 Annual Inspection Report 1021 North Grand Avenue East Post Office Box 19276 Springfield, Illinois 62794-9276

W. The permittee shall notify any regulated small municipal separate storm sewer owner (MS4 Community) that they maintain coverage under an individual NPDES permit. The permittee shall submit any SWPPP or any annual inspection to the MS4 community upon request by the MS4 community.

SPECIAL CONDITION 13. Discharges from the sanitary waste treatment systems (Internal Outfalls A01 and B01) shall be sampled prior to entry into the on-site ditch tributary to the settling pond.

<u>SPECIAL CONDITION 14.</u> Discharges from the remediation system (Internal Outfall C01) shall be sampled prior to mixing with any other discharges associated with Outfall 001.

SPECIAL CONDITION 15. Sampling for Internal Outfall C01 shall occur at the same time as the sampling listed in Special Condition 12 and shall be submitted in accordance with Special Condition 12.

SPECIAL CONDITION 16. The permittee shall sample the effluent from Outfalls 002 and 003 on a semi-annual basis for all Volatile Organic Compounds covered by 40 CFR 136 Appendix A, Methods 624 and 625. All sample results shall be submitted on a semi-annual basis with the June and December Discharge Monitoring Reports to the address indicated in Special Condition 6.

If the results of this sampling indicate that additional monitoring requirements or limitations are necessary, the Agency may modify the permit following public notice and opportunity for comment.

<u>SPECIAL CONDITION 17.</u> IMTT Illinois LLC, Lemont Facility (IL0005126) timely filed a Time-Limited Water Quality Standard (TLWQS) for chloride (Case # PCB 2019-017) and is participating in the chloride workgroup for the CAWS dischargers. Since the permittee timely filed, the chloride water quality standard is stayed. IMTT must continue to participate in the workgroup and must comply with the Board Order resulting from the TLWQS (Case # PCB 2019-017).

SPECIAL CONDITION 18. The permittee shall compete the following described project in accordance with the following schedule:

3 months from effective date of permit

Prepare Sampling Plan for vinyl chloride testing

9 months from effective date of permit

Interim progress report on source of vinyl chloride

15 months from effective date of permit

Final report on source of vinyl chloride

Page 14

NPDES Permit No. IL0005126

Special Conditions

21 months from effective date of permit

27 months from effective date of permit

28 months from effective date of permit

39 months from effective date of permit

30 months from effective date of permit

31 months from effective date of permit

32 months from effective date of permit

33 months from effective date of permit

44 months from effective date of permit

45 months from effective date of permit

46 months from effective date of permit

47 months from effective date of permit

48 months from effective date of permit

48 months from effective date of permit

49 months from effective date of permit

40 months from effective date of permit

40 months from effective date of permit

41 months from effective date of permit

42 months from effective date of permit

43 months from effective date of permit

44 months from effective date of permit

45 months from effective date of permit

46 months from effective date of permit

47 months from effective date of permit

48 months from effective date of permit

49 months from effective date of permit

40 months from effective date of permit

40 months from effective date of permit

41 months from effective date of permit

42 months from effective date of permit

43 months from effective date of permit

44 months from effective date of permit

45 months from effective date of permit

46 months from effective date of permit

47 months from effective date of permit

48 months from effective date of permit

48 months from effective date of permit

49 months from effective date of permit

40 months from effective date of permit

40 months from effective date of permit

41 months from effective date of permit

42 months from effective date of permit

43 months from effective date of permit

44 months from effective date of permit

45 months from effective date of permit

46 months from effective date of permit

47 months from effective date of permit

48 months from effective date of permit

48 months from effective date of permit

48 months from effective date of perm

The permittee shall submit a progress report to the Agency every six months from the effective date.

This Permit may be modified, with Public Notice, to include revised compliance dates set out in this Permit that are superseded or supplemented by compliance dates in judicial orders or Pollution Control Board orders. Prior to such permit modification, the revised dates on the appropriate orders shall govern the Permittee's compliance.

Standard Conditions

Definitions

Act means the Illinois Environmental Protection Act, 415 ILCS 5 as Amended.

Agency means the Illinois Environmental Protection Agency.

Board means the Illinois Pollution Control Board.

Clean Water Act (formerly referred to as the Federal Water Pollution Control Act) means Pub. L 92-500, as amended. 33 U.S.C. 1251 et seq.

NPDES (National Pollutant Discharge Elimination System) means the national program for issuing, modifying, revoking and reissuing, terminating, monitoring and enforcing permits, and imposing and enforcing pretreatment requirements, under Sections 307, 402, 318 and 405 of the Clean Water Act.

USEPA means the United States Environmental Protection Agency.

Dally Discharge means the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. pollutants with limitations expressed in units of mass, the "daily discharge" is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurements, the "daily discharge" is calculated as the average measurement of the pollutant over the day.

Maximum Dally Discharge Limitation (daily maximum) means the highest allowable daily discharge.

Average Monthly Discharge Limitation (30 day average) means the highest allowable average of daily discharges over a calendar month, calculated as the sum of all daily discharges measured during a calendar month divided by the number of daily discharges measured during that month.

Average Weekly Discharge Limitation (7 day average) means the highest allowable average of daily discharges over a calendar week, calculated as the sum of all daily discharges measured during a calendar week divided by the number of daily discharges measured during that week.

Best Management Practices (BMPs) means schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the pollution of waters of the State. BMPs also include treatment requirements, operating procedures, and practices to control plant site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage.

Aliquot means a sample of specified volume used to make up a total composite sample.

Grab Sample means an individual sample of at least 100 milliliters collected at a randomly-selected time over a period not exceeding 15 minutes.

24-Hour Composite Sample means a combination of at least 8 sample aliquots of at least 100 milliliters, collected at periodic intervals during the operating hours of a facility over a 24-hour period.

Attachment Filing: Received, Glack's Office 05/20/2020 a combination of at least 3 sample aliquots of at least 100 milliliters, collected at periodic intervals during the operating hours of a facility over an 8-hour period.

> Flow Proportional Composite Sample means a combination of sample aliquots of at least 100 milliliters collected at periodic intervals such that either the time interval between each aliquot or the volume of each aliquot is proportional to either the stream flow at the time of sampling or the total stream flow since the collection of the previous aliquot.

- (1) Duty to comply. The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Act and is grounds for enforcement action, permit termination, revocation and reissuance, modification, or for denial of a permit renewal application. The permittee shall comply with effluent standards or prohibitions established under Section 307(a) of the Clean Water Act for toxic pollutants within the time provided in the regulations that establish these standards or prohibitions, even if the permit has not yet been modified to incorporate the requirements.
- (2) Duty to reapply. If the permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the permittee must apply for and obtain a new permit. If the permittee submits a proper application as required by the Agency no later than 180 days prior to the expiration date, this permit shall continue in full force and effect until the final Agency decision on the application has been made.
- (3) Need to halt or reduce activity not a defense. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
- (4) Duty to mitigate. The permittee shall take all reasonable steps to minimize or prevent any discharge in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.
- (5) Proper operation and maintenance. The permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the permittee to achieve compliance with conditions of this permit. Proper operation and maintenance includes effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate quality assurance procedures. This provision requires the operation of back-up, or auxiliary facilities, or similar systems only when necessary to achieve compliance with the conditions of the permit.
- (6) Permit actions. This permit may be modified, revoked and reissued, or terminated for cause by the Agency pursuant to 40 CFR 122.62 and 40 CFR 122.63. The filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- (7) Property rights. This permit does not convey any property rights of any sort, or any exclusive privilege.
- (8) Duty to provide information. The permittee shall furnish to the Agency within a reasonable time, any information which the Agency may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with the permit. The permittee shall also furnish to the Agency upon request, copies of records required to be kept by this permit.

- (9) Inspection and entry. The permittee shall allow an authorized, Clerk's Office authorization 15 made in whire 3 by a person representative of the Agency or USEPA (including an authorized contractor acting as a representative of the Agency or USEPA), upon the presentation of credentials and other documents as may be required by law, to:
 - (a) Enter upon the permittee's premises where a regulated facility or activity is located or conducted, or where records must be kept under the conditions of this permit;
 - (b) Have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit;
 - Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this permit; and
 - Sample or monitor at reasonable times, for the purpose of assuring permit compliance, or as otherwise authorized by the Act, any substances or parameters at any location.

(10) Monitoring and records.

- (a) Samples and measurements taken for the purpose of monitoring shall be representative of the monitored
- (b) The permittee shall retain records of all monitoring information, including all calibration and maintenance records, and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit, for a period of at least 3 years from the date of this permit, measurement, report or application. Records related to the permittee's sewage sludge use and disposal activities shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503). This period may be extended by request of the Agency or USEPA at any
- (c) Records of monitoring information shall include:
 - (1) The date, exact place, and time of sampling or measurements;
 - (2) The individual(s) who performed the sampling or measurements;
 - The date(s) analyses were performed;
 - The individual(s) who performed the analyses;
 - The analytical techniques or methods used; and
 - (6) The results of such analyses.
- (d) Monitoring must be conducted according to test procedures approved under 40 CFR Part 136, unless other test procedures have been specified in this permit. Where no test procedure under 40 CFR Part 136 has been approved, the permittee must submit to the Agency a test method for approval. The permittee shall calibrate and perform maintenance procedures on all monitoring and analytical instrumentation at intervals to ensure accuracy of measurements.
- (11) Signatory requirement. All applications, reports or information submitted to the Agency shall be signed and certified.
 - (a) Application. All permit applications shall be signed as follows:
 - (1) For a corporation: by a principal executive officer of at least the level of vice president or a person or position having overall responsibility environmental matters for the corporation:
 - (2) For a partnership or sole proprietorship: by a general partner or the proprietor, respectively; or
 - (3) For a municipality, State, Federal, or other public agency: by either a principal executive officer or ranking elected official.
 - All reports required by permits, or other information requested by the Agency shall be signed by a person described inparagraph (e) or by e duly authorized representative of that person. A person is a duly authorized representative only if:

described in paragraph (a); and

(2) The authorization specifies either an individual or a position responsible for the overall operation of the facility, from which the discharge originates, such as a plant manager, superintendent or person of equivalent responsibility; and

(3) The written authorization is submitted to the Agency.

- Changes of Authorization. If an authorization under (b) is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization satisfying the requirements of (b) must be submitted to the Agency prior to or together with any reports, information, or applications to be signed by an authorized representative.
- Certification. Any person signing a document under paragraph (a) or (b) of this section shall make the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

(12) Reporting requirements.

- (a) Planned changes. The permittee shall give notice to the Agency as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required when:
 - (1) The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source pursuant to 40 CFR 122.29 (b); or
 - (2) The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants which are subject neither to effluent limitations in the permit, nor to notification requirements pursuant to 40 CFR 122.42 (a)(1).
 - The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- (b) Anticipated noncompliance. The permittee shall give advance notice to the Agency of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements.
- Transfers. This permit is not transferable to any person except after notice to the Agency.
- Compliance schedules. Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each schedule date.
- Monitoring reports. Monitoring results shall be reported at the intervals specified elsewhere in this permit.
 - (1) Monitoring results must be reported on a Discharge Monitoring Report (DMR).

- , (2) If the permittelectronicationication Received, Clerk's of Figure 10562062020 R 234
 - frequently than required by the permit, using test procedures approved under 40 CFR 136 or as specified in the permit, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR.
 - (3) Calculations for all limitations which require averaging of measurements shall utilize an arithmetic mean unless otherwise specified by the Agency in the permit.
- Twenty-four hour reporting. The permittee shall report (f) any noncompliance which may endanger health or the environment. Any information shall be provided orally within 24-hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the its cause; the period noncompliance and noncompliance, including exact dates and time; and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance. The following shall be included as information which must be reported within 24-hours:
 - Any unanticipated bypass which exceeds any effluent limitation in the permit.
 - (2) Any upset which exceeds any effluent limitation in the permit.
 - (3) Violation of a maximum daily discharge limitation for any of the pollutants listed by the Agency in the permit or any pollutant which may endanger health or the environment.
 - The Agency may waive the written report on a caseby-case basis if the oral report has been received within 24-hours.
- (g) Other noncompliance. The permittee shall report all instances of noncompliance not reported under paragraphs (12) (d), (e), or (f), at the time monitoring reports are submitted. The reports shall contain the information listed in paragraph (12) (f).
- (h) Other information. Where the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application, or in any report to the Agency, it shall promptly submit such facts or information.

(13) Bypass.

- (a) Definitions.
 - (1) Bypass means the intentional diversion of waste streams from any portion of a treatment facility.
 - (2) Severe property damage means substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.
- (b) Bypass not exceeding limitations. The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions of paragraphs (13)(c) and (13)(d).
- (c) Notice.
 - (1) Anticipated bypass. If the permittee knows in advance of the need for a bypass, it shall submit prior notice, if possible at least ten days before the date of the bypass.
 - (2) Unanticipated hypass The permittee shall submit notice of an unanticipated bypass as required in paragraph (12)(f) (24-hour notice).

- (1) Bypass is prohibited, and the Agency may take enforcement action against a permittee for bypass, unless:
 - Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;
 - (ii) There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and
 - (iii) The permittee submitted notices as required under paragraph (13)(c).
- (2) The Agency may approve an anticipated bypass, after considering its adverse effects, if the Agency determines that it will meet the three conditions listed above in paragraph (13)(d)(1).

(14) **Upset**.

- (a) Definition. Upset means an exceptional incident in which there is unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.
- (b) Effect of an upset. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology based permit effluent limitations if the requirements of paragraph (14)(c) are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review.
- (c) Conditions necessary for a demonstration of upset. A permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs, or other relevant evidence that:
 - An upset occurred and that the permittee can identify the cause(s) of the upset;
 - (2) The permitted facility was at the time being properly operated; and
 - (3) The permittee submitted notice of the upset as required in paragraph (12)(f)(2) (24-hour notice).
 - (4) The permittee complied with any remedial measures required under paragraph (4).
- (d) Burden of proof. In any enforcement proceeding the permittee seeking to establish the occurrence of an upset has the burden of proof.
- (15) **Transfer of permits**. Permits may be transferred by modification or automatic transfer as described below:
 - (a) Transfers by modification. Except as provided in paragraph (b), a permit may be transferred by the permittee to a new owner or operator only if the permit has been modified or revoked and reissued pursuant to 40 CFR 122.62 (b) (2), or a minor modification made pursuant to 40 CFR 122.63 (d), to identify the new permittee and incorporate such other requirements as may be necessary under the Clean Water Act.
 - (b) Automatic transfers. As an alternative to transfers under paragraph (a) any NPDES permit may be automatically transferred to a new permittee if:

days in advance of the proposed transfer date;

(2) The notice includes a written agreement between the existing and new permittees containing a specified date for transfer of permit responsibility, coverage and liability between the existing and new permittees; and

(3) The Agency does not notify the existing permittee and the proposed new permittee of its intent to modify or revoke and reissue the permit. If this notice is not received, the transfer is effective on the date specified in the agreement.

- (16) All manufacturing, commercial, mining, and silvicultural dischargers must notify the Agency as soon as they know or have reason to believe:
 - (a) That any activity has occurred or will occur which would result in the discharge of any toxic pollutant identified under Section 307 of the Clean Water Act which is not limited in the permit, if that discharge will exceed the highest of the following notification levels:

(1) One hundred micrograms per liter (100 ug/l);

(2) Two hundred micrograms per liter (200 ug/l) for acrolein and acrylonitrile; five hundred micrograms per liter (500 ug/l) for 2,4-dinitrophenol and for 2methyl-4,6 dinitrophenol; and one milligram per liter (1 mg/l) forantimony.

(3) Five (5) times the maximum concentration value reported for that pollutant in the NPDES permit

application; or

(4) The level established by the Agency in this permit.

- (b) That they have begun or expect to begin to use or manufacture as an intermediate or final product or byproduct any toxic pollutant which was not reported in the NPDES permit application.
- (17) All Publicly Owned Treatment Works (POTWs) must provide adequate notice to the Agency of the following:
 - (a) Any new introduction of pollutants into that POTW from an indirect discharge which would be subject to Sections 301 or 306 of the Clean Water Act if it were directly discharging those pollutants; and

(b) Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of

issuance of the permit.

- (c) For purposes of this paragraph, adequate notice shall include information on (i) the quality and quantity of effluent introduced into the POTW, and (ii) any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.
- (18) If the permit is issued to a publicly owned or publicly regulated treatment works, the permittee shall require any industrial user of such treatment works to comply with federal requirements concerning:
 - (a) User charges pursuant to Section 204 (b) of the Clean Water Act, and applicable regulations appearing in 40 CFR 35;
 - (b) Toxic pollutant effluent standards and pretreatment standards pursuant to Section 307 of the Clean Water
 - (c) Inspection, monitoring and entry pursuant to Section 308 of the Clean Water Act.

(Rev. 7-9-2010 bah)

- Section 301(b)(2)(C) and (D), 304(b)(2), or 307(a)(2) and that effluent standard or limitation is more stringent than any effluent limitation in the permit, or controls a pollutant not limited in the permit, the permit shall be promptly modified or revoked, and reissued to conform to that effluent standard or limitation.
 - (20) Any authorization to construct issued to the permittee pursuant to 35 III. Adm. Code 309.154 is hereby incorporated by reference as a condition of this permit.
 - (21) The permittee shall not make any false statement, representation or certification in any application, record, report, plan or other document submitted to the Agency or the USEPA, or required to be maintained under this permit.
 - (22) The Clean Water Act provides that any person who violates a permit condition implementing Sections 301, 302, 306, 307, 308, 318, or 405 of the Clean Water Act is subject to a civil penalty not to exceed \$25,000 per day of such violation. Any person who willfully or negligently violates permit conditions implementing Sections 301, 302, 306, 307, 308, 318 or 405 of the Clean Water Act is subject to a fine of not less than \$2,500 nor more than \$25,000 per day of violation, or by imprisonment for not more than one year, or both. Additional penalties for violating these sections of the Clean Water Act are identified in 40 CFR 122.41 (a)(2) and (3).
 - (23) The Clean Water Act provides that any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit shall, upon conviction, be punished by a fine of not more than \$10,000, or by imprisonment for not more than 2 years, or both. If a conviction of a person is for a violation committed after a first conviction of such person under this paragraph, punishment is a fine of not more than \$20,000 per day of violation, or by imprisonment of not more than 4 years, or both.
 - (24) The Clean Water Act provides that any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or non-compliance shall, upon conviction, be punished by a fine of not more than \$10,000 per violation, or by imprisonment for not more than 6 months per violation, or by both.
 - (25) Collected screening, slurries, sludges, and other solids shall be disposed of in such a manner as to prevent entry of those wastes (or runoff from the wastes) into waters of the State. The proper authorization for such disposal shall be obtained from the Agency and is incorporated as part hereof by reference.
 - (26) In case of conflict between these standard conditions and any other condition(s) included in this permit, the other condition(s) shall govern.
 - (27) The permittee shall comply with, in addition to the requirements of the permit, all applicable provisions of 35 III. Adm. Code, Subtitle C, Subtitle D, Subtitle E, and all applicable orders of the Board or any court with jurisdiction.
 - (28) The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit is held invalid, the remaining provisions of this permit shall continue in full force and effect.

	PN Date10-25-19	DECENDED
	Permit NoIL0005126	NOV 1 2 2019
	Permittee Name <u>IMTT- Illimois, LLC</u>	IEPA BOW/WPC/PERMIT SECTION
	I will post the Public Notice for a period of beginning	
E	I will not post the Aublic Notice. Signature	1/5/19 Date
	IL 532-1579	

WPC 528 6/87

Tsai, Shu-Mei

From:

Tsai, Shu-Mei

Sent:

Tuesday, October 29, 2019 12:59 PM

To:

Newton, Larry

Cc:

Paller, Ellen; Johnson, Traci

Subject:

RE: NPDES IL0005126 IMTT Illinois - Lemont

Good afternoon,

The Agency received your comments. There is no mixing available for vinyl chloride, but the Agency agrees the compliance schedule for IMTT to achieve compliance. The Re-30 Day Public Notice Period started at 10/25 and will be end at 11/25. Please let me know if you have any comments. Thank you

Shu-Mei

From: Newton, Larry <LarryNewton@IMTT.Com>
Sent: Tuesday, October 29, 2019 12:41 PM
To: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>

Cc: Paller, Ellen <EllenPaller@imtt.com>; Johnson, Traci <TraciJohnson@imtt.com>

Subject: [External] Re: NPDES IL0005126 IMTT Illinois - Lemont

I received a public notice permit today dated October 25, 2019. Please confirm that no revisions have been to the previous public notice draft that was issued August 20, 2019.

Also, I never received any response from the Agency regarding my letter dated October 3, 2019 where I requested a site visit for Agency personnel to discuss he vinyl chloride issue. Please advise whether this will take place prior to issuance of the permit.

Thank you

Larry Newton | Environmental Manager

INTERNATIONAL MATEX TANK TERMINALS

13589 Main Street, Lemont, IL 60439

24420 W. Durkee Road, Channahon, IL 60410

Office (630) 257-3960 | Cell (630) 768-0649

Email <u>larrynewton@imtt.com</u>

From: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>
Sent: Thursday, September 26, 2019 2:13 PM
To: Newton, Larry <LarryNewton@IMTT.Com>
Subject: RE: NPDES IL0005126 IMTT Illinois - Lemont

Larry:

Please check it and let me know. The Agency would like to issue this permit as soon as we can. Thank you

Shu-Mei

From: Newton, Larry LarryNewton@IMTT.Com
Sent: Thursday, September 26, 2019 2:12 PM
To: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>

Subject: [External] Re: NPDES IL0005126 IMTT Illinois - Lemont

Thank you!

Larry Newton, Environmental Manager IMTT ILLINOIS 630-257-3960, office 630-768-0649, cell

From: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>
Sent: Thursday, September 26, 2019 2:06:50 PM
To: Newton, Larry <LarryNewton@IMTT.Com>
Subject: RE: NPDES IL0005126 IMTT Illinois - Lemont

Per your request.

From: Newton, Larry LarryNewton@IMTT.Com
Sent: Thursday, September 26, 2019 10:17 AM
To: Tsai, Shu-Mei Shu-Mei.Tsai@Illinois.gov

Subject: [External] Re: NPDES IL0005126 IMTT Illinois - Lemont

Thank you very much! Would you also be so kind as to provide the Water Quality Based Effluent Analysis completed July 11, 2019 that is referenced in your notes?

Larry Newton | Environmental Manager

INTERNATIONAL MATEX TANK TERMINALS

13589 Main Street, Lemont, IL 60439

24420 W. Durkee Road, Channahon, IL 60410

Office (630) 257-3960 | Cell (630) 768-0649

Email <u>larrynewton@imtt.com</u>

From: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>
Sent: Thursday, September 26, 2019 8:27 AM
To: Newton, Larry <LarryNewton@IMTT.Com>
Subject: RE: NPDES IL0005126 IMTT Illinois - Lemont

Good morning, Larry:

Enclosed the review note. Please keep in mind, after 15 days and 30 days public notice, the review notice could be not match with the draft permit.

Shu-Mei

From: Newton, Larry LarryNewton@IMTT.Com
Sent: Wednesday, September 25, 2019 3:21 PM
To: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>

Subject: [External] Re: NPDES IL0005126 IMTT Illinois - Lemont

May I receive a copy of the permit reviewer notes for my application? Thank you!

Larry Newton | Environmental Manager

INTERNATIONAL MATEX TANK TERMINALS

13589 Main Street, Lemont, IL 60439

24420 W. Durkee Road, Channahon, IL 60410

Office (630) 257-3960 | Cell (630) 768-0649 Email larrynewton@imtt.com

From: Tsai, Shu-Mei <Shu-Mei.Tsai@Illinois.gov>
Sent: Wednesday, September 25, 2019 7:54 AM
To: Newton, Larry <LarryNewton@IMTT.Com>
Subject: RE: NPDES IL0005126 IMTT Illinois - Lemont

Good morning, Larry:

When will you submit the comments? Please let me know. Thank you

Shu-Mei

From: Newton, Larry LarryNewton@IMTT.Com
Sent: Tuesday, September 24, 2019 3:50 PM
To: Tsai, Shu-Mei Shu-Mei.Tsai@Illinois.gov

Subject: [External] Re: NPDES IL0005126 IMTT Illinois - Lemont

We will have additional comments regarding this issue. Can we stop the clock?

Larry Newton | Environmental Manager

INTERNATIONAL MATEX TANK TERMINALS

13589 Main Street, Lemont, IL 60439

24420 W. Durkee Road, Channahon, IL 60410

Office (630) 257-3960 | Cell (630) 768-0649 Email larrynewton@imtt.com

From: Tsai, Shu-Mei Sent: Tuesday, September 24, 2019 3:30 PM
To: Newton, Larry LarryNewton@IMTT.Com
Subject: NPDES IL0005126 IMTT Illinois - Lemont

Good afternoon, Larry:

You submitted a comment letter dated July 31, 2019 about vinyl chloride issue. However, the mail sent to different unit. When we received your letter, it had already passed the Public Notice Period.

This is the initial response for your comment:

The State regulation for vinyl chloride is 35 IAC 302.210 not 302.208 g as previously stated in the Public Notice/Fact Sheet for this permit. The Agency has corrected this error for future reference. The Agency included the vinyl chloride effluent limitation of 0.002 mg/L as a daily maximum value as this value is the human health water quality criteria. Previous data from effluent samples indicated there is a reasonable potential to exceed this value. Therefore, the Agency must include this effluent limitation.

The Agency is ready to issue this permit as soon as possible. Please let me know if you have any additional comments or questions. Thank you.

Shw-Mev Tsav,
Environmental Protection Engineer, Industrial Unit
Permit Section
Division of Water Pollution Control
Illinois Environmental Protection Agency

ph: 217-782-0610 fax: 217-782-9891

Shu-Mei.Tsai@Illinois.gov

State of Illinois - CONFIDENTIALITY NOTICE: The information contained in this communication is confidential, may be attorney-client privileged or attorney work product, may constitute inside information or internal deliberative staff communication, and is intended only for the use of the addressee. Unauthorized use, disclosure or copying of this communication or any part thereof is strictly prohibited and may be unlawful. If you have received this communication in error, please notify the sender immediately by return e-mail and destroy this communication and all copies thereof, including all attachments. Receipt by an unintended recipient does not waive attorney-client privilege, attorney work product privilege, or any other exemption from disclosure.

MTT-Illinois

A PARTNERSHIP

Lemont Facility 13589 Main Street Lemont, IL 60439 Phone (630) 257-6222 Fax (630) 257-7135 Jollet Facility 24420 W. Durkee Road Channahon, IL 60410 Phone (815) 423-2500 Fax (815) 423-2525

November 6, 2019

Mr. Darin E. LeCrone, P.E.
Manager, Industrial Unit, Permit Section
Division of Water Pollution Control
Illinois Environmental Protection Agency
1021 North Grand Avenue East
Springfield, IL 62702

NOV 0 7 2019

IEPA
BOW/WPC/PERMIT SECTION

Re: IMTT Illinois-Lemont Facility

Public Notice Draft NPDES Permit IL0005126

Vinyl Chloride Comments

Dear Mr. LeCrone:

Thank you for the opportunity to review the October 25, 2019 Public Notice Draft NPDES permit for above referenced discharge. We have reviewed the draft permit and find it acceptable except for the effluent limit on outfall 001 for vinyl chloride of a daily maximum of 0.002 mg/L. We believe this limit is inappropriate and respectfully request the Agency review this limit. In support of our request the following is offered.

Background

Outfall 001 discharges to what is the head waters of the I&M Canal on the west side of Route 83. When the Cal Sag Channel was constructed, it physically cut across the I&M Canal, so that now the I&M Canal ends east of Route 83 and then begins again at the IMTT Outfall 001 west of IMTT and Route 83. So the subject discharge is physically the headwaters for the receiving stream, and therefore there is no fish passing the outfall location.

Vinyl Chloride

IMTT operates a groundwater remediation system removing chlorinated solvents from the groundwater. After treatment, the groundwater is discharged to the lagoon system and is discharged through Outfall 001 with the other wastewater. Based on the *reasonable potential* analysis completed by the Agency, the maximum expected vinyl chloride in Outfall 001 is 0.0097 mg/L. (In the third quarter 2019, Outfall 001 contained 0.0081 mg/L vinyl chloride, the highest recorded in the past three years, so the estimate of 0.0097 mg/L appears reasonable).

November 6, 2019 Letter

Page 2 of 3

Treatment

The combined wastewater that is discharged through Outfall 001 is treated through a series of lagoons, with some mechanical aeration. Vinyl chloride is readily air stripped and during the summer months the vinyl chloride levels are consistently below 0.002 mg/L. However, during the winter, air stripping efficiencies decline and ice build-up reduces the volatilization from the lagoon surfaces and vinyl chloride concentrations in Outfall 001 increase.

Effluent Limits

There are no numerical effluent limits for vinyl chloride in the Illinois Adm Code Water Quality Standards, which IMTT believes is the most appropriate standard. The Agency developed a vinyl chloride effluent limit based on a human health criteria of 0.002 mg/L, which is the public drinking water standard — unnecessarily stringent for IMTT's discharge. Apparently, the Agency applied 0.002 mg/L as protective from exposure to splashing, presumably based on some dermal exposure. This "splash factor" was then applied directly to the effluent as a limit without regard to actual water uses (recreational or otherwise) on the I&M Canal or the Chicago Sanitary and Ship Canal where the effluent eventually mixes. As the I&M Canal at the point of discharge is inaccessible to the public, it is not clear for whom this limit intends to protect.

Compliance Schedule

IMTT believes that if the Agency disagrees with this approach, and the effluent limit of 0.002 mg/L remains for vinyl chloride, then a compliance plan needs to be incorporated into the NPDES Permit before issuance to provide IMTT the time necessary to achieve compliance. The following compliance schedule is proposed if the no public exposure argument is rejected.

3 months from effective date of permit	Prepare Sampling Plan for vinyl chloride testing
9 months from effective date of permit	Interim progress report on source of vinyl chloride
15 months from effective date of permit	Final report on source of vinyl chloride
21 months from effective date of permit	Report on Treatment Options for removing vinyl chloride
27 months from effective date of permit	Preliminary design completed for removing vinyl chloride
33 months from effective date of permit	Final design and permit application for construction
36 months from effective date of permit	Construction permit issued
48 months from effective date of permit	Construction complete, vinyl chloride limit goes into effect

(continued)

November 6, 2019 Letter

Page 3 of 3

Conclusion

The inclusion of the vinyl chloride effluent limit is a significant issue to IMTT, and we do not believe the proposed limit is appropriate under the regulations or given actual water uses.

Finally, IMTT's current NPDES permit includes the following statement (which does not appear in the public notice draft) –

The discharge from Outfall 001 can flow, by gravity or be pumped, to the Illinois & Michigan Canal.

IMTT formally requests that this statement be included in the new permit once it becomes effective in order that there is no misinterpretation regarding "discharge."

Thank you for the opportunity to provide these comments. We look forward to working with the Agency in finalizing this permit.

Sincerely,

Larry Newton

Environmental Manager

Cc:

Shu-Mei Tsai

Scott Twait

Brian Koch

Tsai, Shu-Mei

From:

Paller, Ellen < Ellen Paller@imtt.com>

Sent:

Thursday, December 12, 2019 10:28 AM

То:

Tsai, Shu-Mei

Subject:

[External] FW: RE: NPDES IL0005126 IMTT Illinois - Lemont

Attachments:

11-06-2019 comments re vinyl chloride.docx

Just wanted to touch base again

Let me know if you have any questions

Thank you

From: Paller, Ellen

Sent: Friday, November 22, 2019 8:56 AM
To: 'Tsai, Shu-Mei' <Shu-Mei.Tsai@Illinois.gov>

Subject: FW: RE: NPDES IL0005126 IMTT Illinois - Lemont

Just following up on the below. Can we expect a response prior to public comment again?

From: Paller, Ellen

Sent: Monday, November 18, 2019 1:34 PM **To:** Tsai, **Shu-Mei** <**Shu-Mei**.Tsai@Illinois.gov>

Subject: RE: RE: NPDES IL0005126 IMTT Illinois - Lemont

We also requested the following:

"Finally, IMTT's current NPDES permit includes the following statement (which does not appear in the public notice draft) –

The discharge from Outfall 001 can flow, by gravity or be pumped, to the Illinois & Michigan Canal."

We would appreciate a response to the above and to the limits so we understand the reasoning or if you will accept the compliance schedule will that be made part of the permit?

Thank you for your assistance,

From: Tsai, Shu-Mei Sent: Monday, November 18, 2019 1:12 PM
To: Paller, Ellen EllenPaller@imtt.com

Subject: RE: RE: NPDES IL0005126 IMTT Illinois - Lemont

Good afternoon, Ellen:

Just let you know that I didn't hear anything from the management so I believe the Agency may keep the same limit and requirement for vinyl chloride, thanks

Shu-Mei

From: Paller, Ellen < EllenPaller@imtt.com>
Sent: Monday, November 18, 2019 1:09 PM
To: Tsai, Shu-Mei < Shu-Mei.Tsai@Illinois.gov>

Subject: [External] RE: NPDES IL0005126 IMTT Illinois - Lemont

Just following up on our second submittal to the NPDES permit renewal.

Let me know if you have any additional questions that we can discuss.

Larry Newton has resigned and his last day will be next week so please correspond with me from now on.

Ellen Paller IEH&SS Manager
INTERNATIONAL MATEX TANK TERMINALS
13589 Main Street, Lemont, II 60439
Office (630) 257-3953 Cell (630) 405-4069
Email ellenpaller@imtt.com

State of Illinois - CONFIDENTIALITY NOTICE: The information contained in this communication is confidential, may be attorney-client privileged or attorney work product, may constitute inside information or internal deliberative staff communication, and is intended only for the use of the addressee. Unauthorized use, disclosure or copying of this communication or any part thereof is strictly prohibited and may be unlawful. If you have received this communication in error, please notify the sender immediately by return e-mail and destroy this communication and all copies thereof, including all attachments. Receipt by an unintended recipient does not waive attorney-client privilege, attorney work product privilege, or any other exemption from disclosure.

STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

Permittee: IMTT Illinois - Lemont

Page 1 of 1

Permit Number: IL0005126 Reviewed By: Shu-Mei Tsai

Date: Monday, December 2, 2019

30-Day Notice Review Notes:

The Agency received a comment letter dated November 6, 2019 from Larry Newton

1. The inclusion of the vinyl chloride effluent limit is a significant issue to IMTT, and we do not believe the proposed limit is appropriate under the regulations or given actual water uses.

Response:

It was a reference error for vinyl chloride in the daft permit and it should be 35 IAC 302.210. According to the calculation from the Standards Unit, the 95% potential is 0.0097mg/L and it exceeds 0.002 mg/L of the standard of derived water quality criteria.

The Agency included a compliance schedule in Special Condition 18 for meeting effluent limitations of vinyl chloride pursuant to your letters of October 3, 2019 and November 6, 2019.

2. IMTT's current NPDES permit includes the following statement (which does not appear in the public notice draft) –

The discharge from Outfall 001 can flow, by gravity or be pumped, to the Illinois & Michigan Canal.

IMTT formally requests that this statement be included in the new permit once it becomes effective in order that there is no misinterpretation regarding "discharge."

Response:

The foot note has been added on page 2 of permit.

3. The Agency modified the permit for clarification purposes as follows:

The compliance schedule for vinyl chloride in Special Condition 18 is referenced on page 2 of the permit for clarification purposes. The initial sentence in Special Condition 18 has been modified to describe the proposed project for clarification purposes.

Action: Re-issue NPDES Permit

TENNOIS ENVIRORIMENTAL PROPERTORE

1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 (217) 782-3397 JB PRITZKER, GOVERNOR JOHN J. KIM, DIRECT OR

217/782-0610

December 13, 2019

IMTT Illinois, LLC 13589 Main Street Lemont, Illinois 60439

Re:

IMTT Illinois LLC Lemont Facility

NPDES Permit No. IL0005126 Bureau ID# W0311620009

Final Permit

Gentlemen:

Attached is the final NPDES Permit for your discharge. The Permit as issued covers discharge limitations, rmonitoring, and reporting requirements. Failure to meet any portion of the Permit could result in civil and/or criminal penalties. The Illinois Environmental Protection Agency is ready and willing to assist you in interpreting any of the conditions of the Permit as they relate specifically to your discharge.

In response to your comments received November 6, 2019, the Agency offers the following:

- The reference for vinyl chloride has been corrected as 35 IAC 302.210. The Agency has included an effluent limitation for vinyl chloride of 0.002 mg/L due to a reasonable potential analysis. The Agency included a compliance schedule in Special Condition 18 for meeting effluent limitations of vinyl chloride pursuant to your letters of October 3, 2019 and November 6, 2019.
- The foot note has been added on page 2 of the permit for clarification as requested.
 The compliance schedule for vinyl chloride in Special Condition 18 is referenced on page 2 of the permit for clarification purposes. The initial sentence in Special Condition 18 has been modified to describe the proposed project for clarification purposes.

Pursuant to the Final NPDES Electronic Reporting Rule, all permittees must report DMRs electronically unless a waiver has been granted by the Agency. The Agency utilizes NetDMR, a web based application, which allows the submittal of electronic Discharge Monitoring Reports instead of paper Discharge Monitoring Reports (DMRs). More information regarding NetDMR can be found Agency website, <a href="https://www2.illinois.gov/epa/topics/water-quality/surface-water/netdmr/Pages/quick-answer-quality/surface-water/netdmr/Pages/quick-answer-quality/surface-water/netdmr/Pages/quick-answer-pages/quic guide.aspx. If your facility has received a waiver from the NetDMR program, a supply of preprinted paper DMR Forms will be sent to your facility. Additional information and instructions will accompany the preprinted DMRs. Please see the attachment regarding the electronic reporting rule.

The attached Permit is effective as of the date indicated on the first page of the Permit. Until the effective date of any re-issued Permit, the limitations and conditions of the previously-issued Permit remain in full effect. You have the right to appeal any condition of the Permit to the Illinois Pollution Control Board within a 35 day period following the issuance date.

Should you have questions concerning the Permit, please contact Shu-Mei Tsai at 217/782-0610.

Sincerely.

Darin E. LeCrone, P.E.

Manager, Industrial Unit, Permit Section

Division of Water Pollution Control

DEL:SMT:18101001.smt

Attachment: Final Permit

Records Unit cc:

Compliance Assurance Section

Des Plaines Region

CMAP DRSCW

4302 N. Main Street, Rockford, IL 61103 (815) 987-7760 595 5. State Street, Elgin, IL 60123 (847) 608-3131 2125 S. First Street, Champaign, IL 61820 (217) 278-5800 2009 Mail Street Collinsville, IL 62234 (618) 346-5120

9511 Harrison Street, Des Plaines, IL 60016 (847) 294-4000 412 SW Washington Street, Suite D, Peoria, IL 61602 (309) 671-3022 2309 W. Main Street, Suite 116 Marion, II 62959 (618) 993,7200 100 W. Randolph Street, Suite 4-500, Chicago, IL 60601

Illinois Environmental Protection Agency

Division of Water Pollution Control

1021 North Grand Avenue East

Post Office Box 19276

Springfield, Illinois 62794-9276

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

Reissued (NPDES) Permit

Expiration Date: December 31, 2024

Issue Date: December 13, 2019 Effective Date: January 1, 2020

Name and Address of Permittee:

IMTT Illinois

13589 Main Street Lemont, Illinois 60439 Facility Name and Address:

IMTT Illinois – Lemont Facility 13589 Main Street Lemont, Illinois 60439

(Cook County)

Discharge Number and Name:

001 Combined Effluent Wastewater

A01 Treated Sanitary Wastewater

B01 Treated Sanitary Wastewater

C01 Treated Remediation Water

002 Stormwater Runoff

003 Stormwater Runoff

Receiving Waters:

Illinois and Michigan Canal

Illinois and Michigan Canal Calumet Sag Channel

In compliance with the provisions of the Illinois Environmental Protection Act, Title 35 of Ill. Adm. Code, Subtitle C and/or Subtitle D, Chapter 1, and the Clean Water Act (CWA), the above-named permittee is hereby authorized to discharge at the above location to the above-named receiving stream in accordance with the standard conditions and attachments herein.

Permittee is not authorized to discharge after the above expiration date. In order to receive authorization to discharge beyond the expiration date, the permittee shall submit the proper application as required by the Illinois Environmental Protection Agency (IEPA) not later than 180 days prior to the expiration date.

Darin E. LeCrone, P.E.

Manager, Industrial Unit, Permit Section Division of Water Pollution Control

DEL:SMT:18101001.smt

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall 001 Combined Effluent Wastewater (DAF = 0.238 MGD) *

Catian our Combined Ema	CIT Wastewater (DAI - 0.20	o wob,			
	LOAD LIMITS lbs/day DAF (DMF)	CONCENT		Di .	
PARAMETER	30 DAY DAILY AVERAGE MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	SAMPLE TYPE
The discharge consists of 1. Boiler Blowdown 2. Water Softener E 3. Reverse Osmosi 4. Laboratory Waste 5. Treated Sanitary 6. Safety Shower T 7. Fire Hose Hydros 8. Air Compressor 0 9. Vehicle Washdow 10. Tank Hydrostatio 11. Stormwater Rund 12. Scrubber Water 13. Remediation Water 14. Tank Steam Con	Backflush is Reject e Wastewater (A01 and B01) est Water static Water Cooling Water wn Test Water off* ter (C01)				
Flow (MGD)	See Special Condition 1			1/Month	Measurement
рН	See Special Condition 2	(6)		1/Month	Grab
BOD ₅		30	60	1/Month	Grab

Flow (MGD)	See Special Condition 1			•	1/Month	Measurement
pH	See Special Condition 2	(6)			1/Month	Grab
BOD₅		30		60	1/Month	Grab
Temperature	See Special Condition 3.				1/Month	Single Reading
Total Residual Chlorine	See Special Condition 4.	G.		0.05	1/Month	Grab
Total Suspended Solids		30		60	1/Month	Grab
Oil and Grease		15		30	1/Month	Grab
Iron (Total)		2		4	1/Month	Composite
Chloride			Monitor Only		1/Month	Grab
Vinyl Chloride	See Special Condition 18.			0.002	1/Month	Grab
Ammonia		30 Day Average	Weekly Average	Daily Maximum	1/Month	Grab
Spring/Fall		3.2	7.9	15.0		
Summer		2.3	5.8	15.0		
Winter	e e	5.6	14.0	15.0		
Dissolved Oxygen	# } (Monthly Average not less than	Weekly Average not less than	Daily Minimum	1/Month	Grab
March - July		5	6			
August - February		3.5	4	5.5		,

Stormwater

See Special Condition 12

^{*}The discharge from Outfall 001 can flow by gravity or be pumped to the Illinois and Michigan Ganal.

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall A01 Treated Sanitary Wastewater (DAF = 0.015 MGD)

, 4 2 4	LOAD LIMI <u>DAF (</u>		CONCEN LIMITS	TRATION S mg/L	×	
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	SAMPLE TYPE
Flow (MGD)	See Special	Condition 1.			1/Month	Measure
рН	See Special	Condition 2			1/Month	Grab
BOD ₅	3.75	7.50	30	60	1/Month	Grab
Total Suspended Solids	3.75	7.50	30	60	1/Month	Grab
Fecal Coliform	See Special	Condition 5.		400/100 ml	1/Month	Grab

See Special Condition 13

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall B01 Treated Sanitary Wastewater

(DAF = 0.015 MGD)

9	LOAD LIMITS lbs/day CO <u>DAF (DMF)</u>			TRATION S mg/L		
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	SAMPLE TYPE
Flow (MGD)	See Special	Condition 1.			1/Month	Measure
рН	See Special	Condition 2			1/Month	Grab
BOD ₅	3.75	7.50	30	60	1/Month	Grab
Total Suspended Solids	3.75	7.50	30	60	1/Month	Grab
Fecal Coliform	See Special	Condition 5.		400/100 ml	1/Month	Grab

See Special Condition 13

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall C01 Remediation Water* (DAF = 200 gpd)

		ITS lbs/day <u>[DMF]</u>		ITRATÍON S mg/L	34 7	
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	SAMPLE TYPE
Flow (MGD)	See Special Condition 1.				1/Month	Measure
pH	See Special	See Special Condition 2		160	1/Month	Grab
Total Organic Carbon			Monito	or Only	1/Quarter**	Grab
1,2 Dichloroethane			Monit	or Only	1/Quarter**	Grab

^{* -} See Special Condition 14.

^{** -} See Special Condition 15.

Page 6

NPDES Permit No. IL0005126

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be monitored and limited at all times as follows:

Outfall 002 Stormwater

(Intermittent Discharge)

mit.	LOAD LIMITS lbs/day DAF (DMF)			TRATION S mg/l		
PARAMETER	30 DAY AVERAGE	DAILY MAXIMUM	30 DAY AVERAGE	DAILY MAXIMUM	SAMPLE FREQUENCY	SAMPLE TYPE
Flow (MGD)	See Special C	Condition 1.		*	2/Year	Measure
Volatile Organic Compounds	See Special Condition 16.		Monitor Only		2/Year	Grab
Stormwater	See Special C	Condition 12.				

R 254

NPDES Permit No. IL0005126

Effluent Limitations and Monitoring

From the effective date of this permit until the expiration date, the effluent of the following discharges shall be mornitored and limited at all times as follows:

Outfall 003 Stormwater (In

(Intermittent Discharge)

LOAD LIMITS lbs/day DAF (DMF) CONCENTRATION LIMITS mg/l

PARAMETER

30 DAY AVERAGE DAILY MAXIMUM 30 DAY AVERAGE DAILY MAXIMUM

SAMPLE FREQUENCY

SAMPLE TYPE

Flow (MGD)

See Special Condition 1.

2/Year

Measure

Volatile Organic Compounds

See Special Condition 16.

Monitor Only

2/Year

Grab

Stormwater

See Special Condition 12.

Special Conditions

<u>SPECIAL CONDITION 1.</u> Flow shall be measured in units of Million Gallons per Day (MGD) and reported as a monthly average and a daily maximum on the Discharge Monitoring Report.

<u>SPECIAL CONDITION 2.</u> The pH shall be in the range 6.5 to 9.0. The monthly minimum and monthly maximum values shall be reported on the DMR form.

SPECIAL CONDITION 3. This facility is not allowed any mixing with the receiving stream in order to meet applicable water quality thermal limitations. Therefore, discharge of wastewater from this facility must meet the following thermal limitations prior to discharge into the receiving stream.

A. The discharge must not exceed the maximum limits in the following table during more than one percent of the hours in the 12 month period ending with any month. Moreover, at no time shall the water temperature of the discharge exceed the maximum limits in the following table by more the 1.7° C (3° F).

	Jan.	Feb.	Mar.	<u>April</u>	May	<u>June</u>	<u>July</u>	Aug.	Sept.	Oct.	Nov.	Dec.
°F	60	60	60	90	90	90	90	90	90	90	90	60
°C	16	16	16	32	32	32	32	32	32	32	32	16

- B. In addition, the discharge shall not cause abnormal temperature changes that may adversely affect aquatic life unless caused by natural conditions.
- C. The discharge shall not cause the maximum temperature rise above natural temperatures to exceed 2.8° C (5° F).
- D. The monthly maximum value shall be reported on the DMR form.

<u>SPECIAL CONDITION 4.</u> All samples for Total Residual Chlorine shall be analyzed by an applicable method contained in 40 CFR 136, equivalent in accuracy to low-level amperometric titration. Any analytical variability of the method used shall be considered when determining the accuracy and precision of the results obtained.

SPECIAL CONDITION 5. The daily maximum fecal coliform count shall not exceed 400 per 100 ml.

SPECIAL CONDITION 6. The Permittee shall record monitoring results on Discharge Monitoring Report (DMR) electronic forms using one such form for each outfall each month.

In the event that an outfall does not discharge during a monthly reporting period, the DMR Form shall be submitted with no discharge indicated.

The Permittee is required to submit electronic DMRs (NetDMRs) instead of mailing paper DMRs to the IEPA unless a waiver has been granted by the Agency. More information, including registration information for the NetDMR program, can be obtained on the IEPA website, https://www2.illinois.gov/epa/topics/water-quality/surface-water/netdmr/Pages/quick-answer-guide.aspx

The completed Discharge Monitoring Report forms shall be submitted to IEPA no later than the 25th day of the following month, unless otherwise specified by the permitting authority.

Permittees that have been granted a waiver shall mail Discharge Monitoring Reports with an original signature to the IEPA at the following address:

Illinois Environmental Protection Agency
Division of Water Pollution Control
Attention: Compliance Assurance Section, Mail Code # 19
1021 North Grand Avenue East
Post Office Box 19276
Springfield, Illinois 62794-9276

SPECIAL CONDITION7. The use or operation of this facility shall be by or under the supervision of a Certified Class K operator.

SPECIAL CONDITION 8. If an applicable effluent standard or limitation is promulgated under Sections 301(b)(2)(C) and (D), 304(b)(2), and 307(a)(2) of the Clean Water Act and that effluent standard or limitation is more stringent than any effluent limitation in the permit or controls a pollutant not limited in the NPDES Permit, the Agency shall revise or modify the permit in accordance with the more stringent standard or prohibition and shall so notify the permittee.

Special Conditions

<u>SPECIAL CONDITION 9.</u> The effluent, alone or in combination with other sources, shall not cause a violation of any applicable water quality standard outlined in 35 III. Adm. Code 302.

<u>SPECIAL CONDITION 10.</u> In the event the permittee shall require the use of water treatment additives other than those previously approved by the Agency, or if the permittee increases the feed rate or quantity of the additives used beyond what has previously been approved by the Agency, the permittee shall request a modification of this permit in accordance with the Standard Conditions - Attachment H.

<u>SPECIAL CONDITION 11.</u> Samples taken in compliance with the effluent monitoring requirements shall be taken at a point representative of the discharge, but prior to entry into the receiving stream.

SPECIAL CONDITION 12.

STORM WATER POLLUTION PREYENTION PLAN (SWPPP)

- A. A storm water pollution prevention plan shall be maintained by the permittee for the storm water associated with industrial activity at this facility. The plan shall identify potential sources of pollution which may be expected to affect the quality of storm water discharges associated with the industrial activity at the facility. In addition, the plan shall describe and ensure the implementation of practices which are to be used to reduce the pollutants in storm water discharges associated with industrial activity at the facility and to assure compliance with the terms and conditions of this permit. The permittee shall modify the plan if substantive changes are made or occur affecting compliance with this condition.
 - Waters not classified as impaired pursuant to Section 303(d) of the Clean Water Act.

Unless otherwise specified by federal regulation, the storm water pollution prevention plan shall be designed for a storm event equal to or greater than a 25-year 24-hour rainfall event.

2. Waters classified as impaired pursuant to Section 303(d) of the Clean Water Act

For any site which discharges directly to an impaired water identified in the Agency's 303(d) listing, and if any parameter in the subject discharge has been identified as the cause of impairment, the storm water pollution prevention plan shall be designed for a storm event equal to or greater than a 25-year 24-hour rainfall event. If required by federal regulations, the storm water pollution prevention plan shall adhere to a more restrictive design criteria.

- B. The operator or owner of the facility shall make a copy of the plan available to the Agency at any reasonable time upon request.
 - Facilities which discharge to a municipal separate storm sewer system shall also make a copy available to the operator of the municipal system at any reasonable time upon request.
- C. The permittee may be notified by the Agency at any time that the plan does not meet the requirements of this condition. After such notification, the permittee shall make changes to the plan and shall submit a written certification that the requested changes have been made. Unless otherwise provided, the permittee shall have 30 days after such notification to make the changes.
- D. The discharger shall amend the plan whenever there is a change in construction, operation, or maintenance which may affect the discharge of significant quantities of pollutants to the waters of the State or if a facility inspection required by paragraph H of this condition indicates that an amendment is needed. The plan should also be amended if the discharger is in violation of any conditions of this permit, or has not achieved the general objective of controlling pollutants in storm water discharges. Amendments to the plan shall be made within 30 days of any proposed construction or operational changes at the facility, and shall be provided to the Agency for review upon request.
- E. The plan shall provide a description of potential sources which may be expected to add significant quantities of pollutants to storm water discharges, or which may result in non-storm water discharges from storm water outfalls at the facility. The plan shall include, at a minimum, the following items:
 - A topographic map extending one-quarter mile beyond the property boundaries of the facility, showing: the facility, surface water bodies, wells (including injection wells), seepage pits, infiltration ponds, and the discharge points where the facility's storm water discharges to a municipal storm drain system or other water body. The requirements of this paragraph may be included on the site map if appropriate. Any map or portion of map may be withheld for security reasons.
 - 2. A site map showing:
 - The storm water conveyance and discharge structures;
 - An outline of the storm water drainage areas for each storm water discharge point;

Special Conditions

- iii. Paved areas and buildings;
- iv. Areas used for outdoor manufacturing, storage, or disposal of significant materials, including activities that generate significant quantities of dust or particulates.
- v. Location of existing storm water structural control measures (dikes, coverings, detention facilities, etc.);
- vi. Surface water locations and/or municipal storm drain locations
- vii. Areas of existing and potential soil erosion;
- viii. Vehicle service areas;
- ix. Material loading, unloading, and access areas.
- x. Areas under items iv and ix above may be withheld from the site for security reasons.
- A narrative description of the following:
 - The nature of the industrial activities conducted at the site, including a description of significant materials that are treated, stored or disposed of in a manner to allow exposure to storm water;
 - Materials, equipment, and vehicle management practices employed to minimize contact of significant materials with storm water discharges;
 - iii. Existing structural and non-structural control measures to reduce pollutants in storm water discharges;
 - iv. Industrial storm water discharge treatment facilities;
 - v. Methods of onsite storage and disposal of significant materials.
- 4. A list of the types of pollutants that have a reasonable potential to be present in storm water discharges in significant quantities. Also provide a list of any pollutant that is listed as impaired in the most recent 303(d) report.
- 5. An estimate of the size of the facility in acres or square feet, and the percent of the facility that has impervious areas such as pavement or buildings.
- 6. A summary of existing sampling data describing pollutants in storm water discharges.
- F. The plan shall describe the storm water management controls which will be implemented by the facility. The appropriate controls shall reflect identified existing and potential sources of pollutants at the facility. The description of the storm water management controls shall include:
 - 1. Storm Water Pollution Prevention Personnel Identification by job titles of the individuals who are responsible for developing, implementing, and revising the plan.
 - Preventive Maintenance Procedures for inspection and maintenance of storm water conveyance system devices such as oil/water separators, catch basins, etc., and inspection and testing of plant equipment and systems that could fail and result in discharges of pollutants to storm water.
 - Good Housekeeping Good housekeeping requires the maintenance of clean, orderly facility areas that discharge storm water.
 Material handling areas shall be inspected and cleaned to reduce the potential for pollutants to enter the storm water conveyance system.
 - 4. Spill Prevention and Response Identification of areas where significant materials can spill into or otherwise enter the storm water conveyance systems and their accompanying drainage points. Specific material handling procedures, storage requirements, spill cleanup equipment and procedures should be identified, as appropriate. Internal notification procedures for spills of significant materials should be established.
 - 5. Storm Water Management Practices Storm water management practices are practices other than those which control the source of pollutants. They include measures such as installing oil and grit separators, diverting storm water into retention basins, etc. Based on assessment of the potential of various sources to contribute pollutants, measures to remove pollutants

Special Conditions

from storm water discharge shall be implemented. In developing the plan, the following management practices shall be considered:

- i. Containment Storage within berms or other secondary containment devices to prevent leaks and spills from entering storm water runoff. To the maximum extent practicable storm water discharged from any area where material handling equipment or activities, raw material, intermediate products, final products, waste materials, by-products, or industrial machinery are exposed to storm water should not enter vegetated areas or surface waters or infiltrate into the soil unless adequate treatment is provided.
- ii. Oil & Grease Separation Oil/water separators, booms, skimmers or other methods to minimize oil contaminated storm water discharges.
- Debris & Sediment Control Screens, booms, sediment ponds or other methods to reduce debris and sediment in storm water discharges.
- iv. Waste Chemical Disposal Waste chemicals such as antifreeze, degreasers and used oils shall be recycled or disposed of in an approved manner and in a way which prevents them from entering storm water discharges.
- v. Storm Water Diversion Storm water diversion away from materials manufacturing, storage and other areas of potential storm water contamination. Minimize the quantity of storm water entering areas where material handling equipment of activities, raw material, intermediate products, final products, waste materials, by-products, or industrial machinery are exposed to storm water using green infrastructure techniques where practicable in the areas outside the exposure area, and otherwise divert storm water away from exposure area.
- vi. Covered Storage or Manufacturing Areas Covered fueling operations, materials manufacturing and storage areas to prevent contact with storm water.
- vii. Storm Water Reduction Install vegetation on roofs of buildings within adjacent to the exposure area to detain and evapotranspirate runoff where precipitation falling on the roof is not exposed to contaminants, to minimize storm water runoff; capture storm water in devices that minimize the amount of storm water runoff and use this water as appropriate based on quality.
- 6. Sediment and Erosion Prevention The plan shall identify areas which due to topography, activities, or other factors, have a high potential for significant soil erosion. The plan shall describe measures to limit erosion.
- 7. Employee Training Employee training programs shall inform personnel at all levels of responsibility of the components and goals of the storm water pollution control plan. Training should address topics such as spill response, good housekeeping and material management practices. The plan shall identify periodic dates for such training.
- 8. Inspection Procedures Qualified plant personnel shall be identified to inspect designated equipment and plant areas. A tracking or follow-up procedure shall be used to ensure appropriate response has been taken in response to an inspection. Inspections and maintenance activities shall be documented and recorded.
- G. Non-Storm Water Discharge The plan shall include a certification that the discharge has been tested or evaluated for the presence of non-storm water discharge. The certification shall include a description of any test for the presence of non-storm water discharges, the methods used, the dates of the testing, and any onsite drainage points that were observed during the testing. Any facility that is unable to provide this certification must describe the procedure of any test conducted for the presence of non-storm water discharges, the test results, potential sources of non-storm water discharges to the storm sewer, and why adequate tests for such storm sewers were not feasible.
- H. Quarterly Visual Observation of Discharges The requirements and procedures for quarterly visual observations are applicable to all outfalls covered by this condition.
 - 1. You must perform and document a quarterly visual observation of a storm water discharge associated with industrial activity from each outfall. The visual observation must be made during daylight hours. If no storm event resulted in runoff during daylight hours from the facility during a monitoring quarter, you are excused from the visual observations requirement for that quarter, provided you document in your records that no runoff occurred. You must sign and certify the document.
 - 2. Your visual observation must be made on samples collected as soon as practical, but not to exceed 1 hour or when the runoff or snow melt begins discharging from your facility. All samples must be collected from a storm event discharge that is greater than 0.1 inch in magnitude and that occurs at least 72 hours from the previously measureable (greater than 0.1 inch rainfall) storm event. The observation must document: color, odor, clarity, floating solids, settled solids, suspended solids, foam, oil sheen, and other obvious indicators of storm water pollution. If visual observations indicate any unnatural color, odor, turbidity,

Special Conditions

floatable material, oil sheen or other indicators of storm water pollution, the permittee shall obtain a sample and monitor for the parameter or the list of pollutants in Part E.4.

- 3: You must maintain your visual observation reports onsite with the SWPPP. The report must include the observation date and time, inspection personnel, nature of the discharge (i.e., runoff or snow melt), visual quality of the storm water discharge (including observations of color, odor, floating solids, settled solids, suspended solids, foam, oil sheem, and other obvious indicators of storm water pollution), and probable sources of any observed storm water contamination.
- 4. You may exercise a waiver of the visual observation requirement at a facility that is inactive or unstaffed, as long as there are no industrial materials or activities exposed to storm water. If you exercise this waiver, you must maintain a certification with your SWPPP stating that the site is inactive and unstaffed, and that there are no industrial materials or activities exposed to storm water.
- 5. Representative Outfalls If your facility has two or more outfalls that you believe discharge substantially identical effluents, based on similarities of the industrial activities, significant materials, size of drainage areas, and storm water management practices occurring within the drainage areas of the outfalls, you may conduct visual observations of the discharge at just one of the outfalls and report that the results also apply to the substantially identical outfall(s).
- 6. The visual observation documentation shall be made available to the Agency and general public upon written request.
- 1. The permittee shall conduct an annual facility inspection to verify that all elements of the plan, including the site map, potential pollutant sources, and structural and non-structural controls to reduce pollutants in industrial storm water discharges are accurate. Observations that require a response and the appropriate response to the observation shall be retained as part of the plan. Records documenting significant observations made during the site inspection shall be submitted to the Agency in accordance with the reporting requirements of this permit.
- J. This plan should briefly describe the appropriate elements of other program requirements, including Spill Prevention Control and Countermeasures (SPCC) plans required under Section 311 of the CWA and the regulations promulgated there under, and Best Management Programs under 40 CFR 125.100.
- K. The plan is considered a report that shall be available to the public at any reasonable time upon request.
- L. The plan shall include the signature and title of the person responsible for preparation of the plan and include the date of initial preparation and each amendment thereto.
- M. Facilities which discharge storm water associated with industrial activity to municipal separate storm sewers may also be subject to additional requirement imposed by the operator of the municipal system

Construction Authorization

Authorization is hereby granted to construct treatment works and related equipment that may be required by the Storm Water Pollution Prevention Plan developed pursuant to this permit.

This Authorization is issued subject to the following condition(s).

- N. If any statement or representation is found to be incorrect, this authorization may be revoked and the permittee there upon waives all rights there under.
- O. The issuance of this authorization (a) does not release the permittee from any liability for damage to persons or property caused by or resulting from the installation, maintenance or operation of the proposed facilities; (b) does not take into consideration the structural stability of any units or part of this project; and (c) does not release the permittee from compliance with other applicable statutes of the State of Illinois, or other applicable local law, regulations or ordinances.
- P. Plans and specifications of all treatment equipment being included as part of the stormwater management practice shall be included in the SWPPP.
- Q. Construction activities which result from treatment equipment installation, including clearing, grading and excavation activities which result in the disturbance of one acre or more of land area, are not covered by this authorization. The permittee shall contact the IEPA regarding the required permit(s).

REPORTING

R. The facility shall submit an electronic copy of the annual inspection report to the Illinois Environmental Protection Agency at epa.npdes.inspection@illinois.gov. The report shall include results of the annual facility inspection which is required by Part I of this condition. The report shall also include documentation of any event (spill, treatment unit malfunction, etc.) which would require

Special Conditions

an inspection, results of the inspection, and any subsequent corrective maintenance activity. The report shall be completed and signed by the authorized facility employee(s) who conducted the inspection(s). The annual inspection report is considered a public document that shall be available at any reasonable time upon request.

- S. The first report shall contain information gathered during the one year time period beginning with the effect ive date of coverage under this permit and shall be submitted no later than 60 days after this one year period has expired. Each subsequent report shall contain the previous year's information and shall be submitted no later than one year after the previous year's report was due.
- T. If the facility performs inspections more frequently than required by this permit, the results shall be included as additional information in the annual report.
- U. The permittee shall retain the annual inspection report on file at least 3 years. This period may be extended by request of the Illinois Environmental Protection Agency at any time.
- V. Annual inspection reports shall be submitted to one of the following addresses:
 - a. Electronic Quarterly Reposts should be submitted to

epa.indannualinsp@illinois.gov

b. If electronic submittal is unavailable, reports should be mailed to:

Illinois Environmental Protection Agency
Division of Water Pollution Control
Compliance Assurance Section, Mail Code #19
Annual Inspection Report
1021 North Grand Avenue East
Post Office Box 19276
Springfield, Illinois 62794-9276

W. The permittee shall notify any regulated small municipal separate storm sewer owner (MS4 Community) that they maintain coverage under an individual NPDES permit. The permittee shall submit any SWPPP or any annual inspection to the MS4 community upon request by the MS4 community.

<u>SPECIAL CONDITION 13.</u> Discharges from the sanitary waste treatment systems (Internal Outfalls A01 and B01) shall be sampled prior to entry into the on-site ditch tributary to the settling pond.

<u>SPECIAL CONDITION 14.</u> Discharges from the remediation system (Intemal Outfall C01) shall be sampled prior to mixing with any other discharges associated with Outfall 001.

SPECIAL CONDITION 15. Sampling for Internal Outfall C01 shall occur at the same time as the sampling listed in Special Condition 12 and shall be submitted in accordance with Special Condition 12.

<u>SPECIAL CONDITION 16.</u> The permittee shall sample the effluent from Outfalls 002 and 003 on a semi-annual basis for all Volatile Organic Compounds covered by 40 CFR 136 Appendix A, Methods 624 and 625. All sample results shall be submitted on a semi-annual basis with the June and December Discharge Monitoring Reports to the address indicated in Special Condition 6.

If the results of this sampling indicate that additional monitoring requirements or limitations are necessary, the Agency may modify the permit following public notice and opportunity for comment.

SPECIAL CONDITION 17. IMTT Illinois LLC, Lemont Facility (IL0005126) timely filed a Time-Limited Water Quality Standard (TLWQS) for chloride (Case # PCB 2019-017) and is participating in the chloride workgroup for the CAWS dischargers. Since the permittee timely filed, the chloride water quality standard is stayed. IMTT must continue to participate in the workgroup and must comply with the Board Order resulting from the TLWQS (Case # PCB 2019-017).

SPECIAL CONDITION 18. The permittee shall complete the described project for compliance with the vinyl chloride effluent limitation in accordance with the following schedule:

3 months from effective date of permit

9 months from effective date of permit

Prepare Sampling Plan for vinyl chloride testing

Interim progress report on source of vinyl chloride

Page 14

NPDES Permit No. IL0005126

Special Conditions

15 months from effective date of permit

21 months from effective date of permit

27 months from effective date of permit

28 months from effective date of permit

39 months from effective date of permit

40 months from effective date of permit

41 months from effective date of permit

42 months from effective date of permit

43 months from effective date of permit

44 months from effective date of permit

45 months from effective date of permit

46 months from effective date of permit

47 months from effective date of permit

48 months from effective date of permit

49 months from effective date of permit

40 months from effective date of permit

40 months from effective date of permit

41 months from effective date of permit

42 months from effective date of permit

43 months from effective date of permit

44 months from effective date of permit

45 months from effective date of permit

46 months from effective date of permit

47 months from effective date of permit

48 months from effective date of permit

49 months from effective date of permit

40 months from effective date of permit

40 months from effective date of permit

40 months from effective date of permit

The permittee shall submit a progress report to the Agency every six months from the effective date.

This Permit may be modified, with Public Notice, to include revised compliance dates set out in this Permit that are superseded or supplemented by compliance dates in judicial orders or Pollution Control Board orders. Prior to such permit modification, the revised dates on the appropriate orders shall govern the Permittee's compliance.

R 262

Attachment H

Standard Conditions

Definitions

Act means the Illinois Environmental Protection Act, 415 ILCS 5 as Amended.

Agency means the Illinois Environmental Protection Agency.

Board means the Illinois Pollution Control Board.

Clean Water Act (formerly referred to as the Federal Water Pollution Control Act) means Pub. L 92-500, as amended. 33 U.S.C. 1251 et seq.

NPDES (National Pollutant Discharge Elimination System) means the national program for issuing, modifying, revoking and reissuing, terminating, monitoring and enforcing permits, and imposing and enforcing pretreatment requirements, under Sections 307, 402, 318 and 405 of the Clean Water Act.

USEPA means the United States Environmental Protection Agency.

Daily Discharge means the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in units of mass, the "daily discharge" is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurements, the "daily discharge" is calculated as the average measurement of the pollutant over the day.

Maximum Daily Discharge Limitation (daily maximum) means the highest allowable daily discharge.

Average Monthly Discharge Limitation (30 day average) means the highest allowable average of daily discharges over a calendar month, calculated as the sum of all daily discharges measured during a calendar month divided by the number of daily discharges measured during that month.

Average Weekly Discharge Limitation (7 day average) means the highest allowable average of daily discharges over a calendar week, calculated as the sum of all daily discharges measured during a calendar week divided by the number of daily discharges measured during that week.

Best Management Practices (BMPs) means schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the pollution of waters of the State. BMPs also include treatment requirements, operating procedures, and practices to control plant site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage.

Aliquot means a sample of specified volume used to make up a total composite sample.

Grab Sample means an individual sample of at least 100 milliliters collected at a randomly-selected time over a period not exceeding 15 minutes.

24-Hour Composite Sample means a combination of at least 8 sample aliquots of at least 100 milliliters, collected at periodic intervals during the operating hours of a facility over a 24-hour period.

8-Hour Composite Sample means a combination of at least 3 sample aliquots of at least 100 milliliters, collected at periodic intervals during the operating hours of a facility over an 8-hour period.

Flow Proportional Composite Sample means a combination of sample aliquots of at least 100 milliliters collected at periodic intervals such that either the time interval between each aliquot or the volume of each aliquot is proportional to either the stream flow at the time of sampling or the total stream flow since the collection of the previous aliquot.

- (1) Duty to comply. The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Act and is grounds for enforcement action, permit termination, revocation and reissuance, modification, or for denial of a permit renewal application. The permittee shall comply with effluent standards or prohibitions established under Section 307(a) of the Clean Water Act for toxic pollutants within the time provided in the regulations that establish these standards or prohibitions, even if the permit has not yet been modified to incorporate the requirements.
- (2) Duty to reapply. If the permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the permittee must apply for and obtain a new permit. If the permittee submits a proper application as required by the Agency no later than 180 days prior to the expiration date, this permit shall continue in full force and effect until the final Agency decision on the application has been made.
- (3) Need to halt or reduce activity not a defense. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
- (4) Duty to mitigate. The permittee shall take all reasonable steps to minimize or prevent any discharge in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.
- (5) Proper operation and maintenance. The permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the permittee to achieve compliance with conditions of this permit. Proper operation and maintenance includes effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate quality assurance procedures. This provision requires the operation of back-up, or auxiliary facilities, or similar systems only when necessary to achieve compliance with the conditions of the permit.
- (6) Permit actions. This permit may be modified, revoked and reissued, or terminated for cause by the Agency pursuant to 40 CFR 122.62 and 40 CFR 122.63. The filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- (7) Property rights. This permit does not convey any property rights of any sort, or any exclusive privilege.
- (8) Duty to provide information. The permittee shall furnish to the Agency within a reasonable time, any information which the Agency may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with the permit. The permittee shall also furnish to the Agency upon request, copies of records required to be kept by this permit.

(9) Inspection and entry. The permittee shall allow an authorized representative of the Agency or USEPA (including an authorized contractor acting as a representative of the Agency or USEPA), upon the presentation of credentials and other documents as may be required by law, to:

(a) Enter upon the permittee's premises where a regulated facility or activity is located or conducted, or where records

must be kept under the conditions of this permit;

(b) Have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit;

- (c) Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this permit; and
- (d) Sample or monitor at reasonable times, for the purpose of assuring permit compliance, or as otherwise authorized by the Act, any substances or parameters at any location.

(10) Monitoring and records.

- (a) Samples and measurements taken for the purpose of monitoring shall be representative of the monitored
- (b) The permittee shall retain records of all monitoring information, including all calibration and maintenance records, and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit, for a period of at least 3 years from the date of this permit, measurement, report or application. Records related to the permittee's sewage sludge use and disposal activities shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503). This period may be extended by request of the Agency or USEPA at any
- (c) Records of monitoring information shall include:
 - (1) The date, exact place, and time of sampling or measurements;
 - (2) The individual(s) who performed the sampling or measurements:
 - (3) The date(s) analyses were performed;
 - (4) The individual(s) who performed the analyses;
 - (5) The analytical techniques or methods used; and
 - (6) The results of such analyses.
- (d) Monitoring must be conducted according to test procedures approved under 40 CFR Part 136, unless other test procedures have been specified in this permit. Where no test procedure under 40 CFR Part 136 has been approved, the permittee must submit to the Agency a test method for approval. The permittee shall calibrate and perform maintenance procedures on all monitoring and analytical instrumentation at intervals to ensure accuracy of measurements.
- (11) Signatory requirement. All applications, information submitted to the Agency shall be signed and certified.
 - Application. All permit applications shall be signed as (a) follows:
 - (1) For a corporation: by a principal executive officer of at least the level of vice president or a person or position having overall responsibility environmental matters for the corporation:
 - (2) For a partnership or sole proprietorship: by a general partner or the proprietor, respectively; or
 - (3) For a municipality, State, Federal, or other public agency: by either a principal executive officer or ranking elected official.
 - All reports required by permits, or other information remested by the Amency shall be sinced by a person described in paragraph (a) or by a duly authorized representative of that person. A person is a duly

authorized representative only if:

(1) The authorization is made in writing by a person

described in paragraph (a); and

(2) The authorization specifies either an individual or a position responsible for the overall operation of the facility, from which the discharge originates, such as a plant manager, superintendent or person of equivalent responsibility; and

(3) The written authorization is submitted to the Agency.

- (c) Changes of Authorization. If an authorization under (b) is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization satisfying the requirements of (b) must be submitted to the Agency prior to or together with any reports, information, or applications to be signed by an authorized representative.
- Certification. Any person signing a document under paragraph (a) or (b) of this section shall make the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

(12) Reporting requirements.

- (a) Planned changes. The permittee shall give notice to the Agency as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required when:
 - (1) The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source pursuant to 40 CFR 122.29 (b): or
 - (2) The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants which are subject neither to effluent limitations in the permit, nor to notification requirements pursuant to 40 CFR 122.42 (a)(1).
 - (3) The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- (b) Anticipated noncompliance. The permittee shall give advance notice to the Agency of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements.
- (c) Transfers. This permit is not transferable to any person except after notice to the Agency.
- Compliance schedules. Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements, contained in any compliance schedule of this permit shall be submitted no later than 14 days following each schedule date.

(e) Monitoring reports. Monitoring results shall be reported at the intervals specified elsewhen, in this permit.

(1) Monitoring results must be reported on a Discharge Monitoring Report (DMR).

CE U5/2U/2U2U R 264 required in paragraph (12)(f) (24-hour notice).

(2) If the permittee monitors any pollutant more frequently than required by the permit, using test procedures approved under 40 CFR 136 or as specified in the permit, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR.

(3) Calculations for all limitations which require averaging of measurements shall utilize an arithmetic mean unless otherwise specified by the Agency in

the permit.

- Twenty-four hour reporting. The permittee shall report any noncompliance which may endanger health or the environment. Any information shall be provided orally within 24-hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of noncompliance and its cause; the period noncompliance, including exact dates and time; and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance. The following shall be included as information which must be reported within 24-hours:
 - Any unanticipated bypass which exceeds any effluent limitation in the permit.
 - (2) Any upset which exceeds any effluent limitation in the permit.
 - (3) Violation of a maximum daily discharge limitation for any of the pollutants listed by the Agency in the permit or any pollutant which may endanger health or the environment.

The Agency may waive the written report on a caseby-case basis if the oral report has been received within 24-hours.

- (g) Other noncompliance. The permittee shall report all instances of noncompliance not reported under paragraphs (12) (d), (e), or (f), at the time monitoring reports are submitted. The reports shall contain the information listed in paragraph (12) (f).
- (h) Other information. Where the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application, or in any report to the Agency, it shall promptly submit such facts or information.

(13) Bypass.

(a) Definitions.

(1) Bypass means the intentional diversion of waste streams from any portion of a treatment facility.

(2) Severe property damage means substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.

(b) Bypass not exceeding limitations. The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the

provisions of paragraphs (13)(c) and (13)(d).

(c) Notice.

- Anticipated bypass. If the permittee knows in advance of the need for a bypass, it shall submit prior notice, if possible at least ten days before the date of the bypass.
- (2) Unanticipated bypass. The permittee shall submit notice of an unanticipated bypass as

- (d) Prohibition of bypass.
 (1) Bypass is prohibited, and the Agency may take enforcement action against a permittee for bypass, unless:
 - Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;
 - ii) There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and

(iii) The permittee submitted notices as required under paragraph (13)(c).

(2) The Agency may approve an anticipated bypass, after considering its adverse effects, if the Agency determines that it will meet the three conditions listed above in paragraph (13)(d)(1).

(14) Upset.

- (a) Definition. Upset means an exceptional incident in which there is unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.
- (b) Effect of an upset. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology based permit effluent limitations if the requirements of paragraph (14)(c) are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review.
- (c) Conditions necessary for a demonstration of upset. A permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs, or other relevant evidence that:
 - (1) An upset occurred and that the permittee can identify the cause(s) of the upset;
 - (2) The permitted facility was at the time being properly operated; and
 - (3) The permittee submitted notice of the upset as required in paragraph (12)(f)(2) (24-hour notice).
 - required in paragraph (12)(f)(2) (24-nour notice).

 (4) The permittee complied with any remedial measures required under paragraph (4).
- (d) Burden of proof. In any enforcement proceeding the permittee seeking to establish the occurrence of an upset has the burden of proof.
- (15) Transfer of permits. Permits may be transferred by modification or automatic transfer as described below:
 - (a) Transfers by modification. Except as provided in paragraph (b), a permit may be transferred by the permittee to a new owner or operator only if the permit has been modified or revoked and reissued pursuant to 40 CFR 122.62 (b) (2), or a minor modification made pursuant to 40 CFR 122.63 (d), to identify the new permittee and incorporate such other requirements as may be necessary under the Clean Water Act.
 - (b) Automatic transfers. As an alternative to transfers under paragraph (a), any NPDES permit may be automatically

Electronic Filing: Received, Clerk's Office 05/20/2020

transferred to a new permittee if:

(1) The current permittee notifies the Agency at least 30 days in advance of the proposed transfer date;

- (2) The notice includes a written agreement between the existing and new permittees containing a specified date for transfer of permit responsibility, coverage and liability between the existing and new permittees; and
- (3) The Agency does not notify the existing permittee and the proposed new permittee of its intent to modify or revoke and reissue the permit. If this notice is not received, the transfer is effective on the date specified in the agreement.
- (16) All manufacturing, commercial, mining, and silvicultural dischargers must notify the Agency as soon as they know or have reason to believe:
 - (a) That any activity has occurred or will occur which would result in the discharge of any toxic pollutant identified under Section 307 of the Clean Water Act which is not limited in the permit, if that discharge will exceed the highest of the following notification levels:

(1) One hundred micrograms per liter (100 ug/l):

(2) Two hundred micrograms per liter (200 ug/l) for acrolein and acrylonitrile; five hundred micrograms per liter (500 ug/l) for 2,4-dinitrophenol and for 2methyl-4,6 dinitrophenol; and one milligram per liter (1 mg/l) for antimony.

(3) Five (5) times the maximum concentration value reported for that pollutant in the NPDES permit application; or

(4) The level established by the Agency in this permit.

- (b) That they have begun or expect to begin to use or manufacture as an intermediate or final product or byproduct any toxic pollutant which was not reported in the NPDES permit application.
- (17) All Publicly Owned Treatment Works (POTWs) must provide adequate notice to the Agency of the following:
 - (a) Any new introduction of pollutants into that POTW from an indirect discharge which would be subject to Sections 301 or 306 of the Clean Water Act if it were directly discharging those pollutants; and
 - (b) Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit.
 - (c) For purposes of this paragraph, adequate notice shall include information on (i) the quality and quantity of effluent introduced into the POTW, and (ii) any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.
- (18) If the permit is issued to a publicly owned or publicly regulated treatment works, the permittee shall require any industrial user of such treatment works to comply with federal requirements concerning:

(a) User charges pursuant to Section 204 (b) of the Clean Water Act, and applicable regulations appearing in 40 CFR 35:

- (b) Toxic pollutant effluent standards and pretreatment standards pursuant to Section 307 of the Clean Water
- (c) Inspection, monitoring and entry pursuant to Section 308 of the Clean Water Act.

(Rev. 7-9-2010 bah)

(19) If an applicable standard or limitation is promulgated under Section 301(b)(2)(C) and (D), 304(b)(2), or 307(a)(2) and that effluent standard or limitation is more stringent than any effluent limitation in the permit, or controls a pollutant not limited in the permit, the permit shall be promptly modified or revoked, and reissued to conform to that effluent standard or limitation.

R 265

- (20) Any authorization to construct issued to the permittee pursuant to 35 III. Adm. Code 309.154 is hereby incorporated by reference as a condition of this permit.
- (21) The permittee shall not make any false statement, representation or certification in array application, record, report, plan or other document submitted to the Agency or the USEPA, or required to be maintained under this permit.
- (22) The Clean Water Act provides that any person who violates a permit condition implementing Sections 301, 302, 306, 307, 308, 318, or 405 of the Clean Water Act is subject to a civil penalty not to exceed \$25,000 per day of such violation. Any person who willfully or negligently violates permit conditions implementing Sections 301, 302, 306, 307, 308, 318 or 405 of the Clean Water Act is subject to a fine of not less than \$2,500 nor more than \$25,000 per day of violation, or by imprisonment for not more than one year, or both. Additional penalties for violating these sections of the Clean Water Act are identified in 40 CFR 122.41 (a)(2) and (3).
- (23) The Clean Water Act provides that any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit shall, upon conviction, be punished by a fine of not more than \$10,000, or by imprisonment for not more than 2 years, or both. If a conviction of a person is for a violation committed after a first conviction of such person under this paragraph, punishment is a fine of not more than \$20,000 per day of violation, or by imprisonment of not more than 4 years, or
- (24) The Clean Water Act provides that any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or non-compliance shall, upon conviction, be punished by a fine of not more than \$10,000 per violation, or by imprisonment for not more than 6 months per violation, or by both.
- (25) Collected screening, slurries, sludges, and other solids shall be disposed of in such a manner as to prevent entry of those wastes (or runoff from the wastes) into waters of the State. The proper authorization for such disposal shall be obtained from the Agency and is incorporated as part hereof by reference.
- (26) In case of conflict between these standard conditions and any other condition(s) included in this permit, the other condition(s) shall govern.
- (27) The permittee shall comply with, in addition to the requirements of the permit, all applicable provisions of 35 III. Adm. Code, Subtitle C, Subtitle D, Subtitle E, and all applicable orders of the Board or any court with jurisdiction.
- (28) The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit is held invalid, the remaining provisions of this permit shall continue in full force and effect.